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Chapter 1

Introduction and Basic Definitions

1.1 Introduction

Figure 1.1: Basic principle of a hydro-
gen fuel cell. Image by Landesinitative
Brennstoffzelle Niedersachsen.

Alkaline, hydrogen, and methanol fuel cells
are important future technologies. They
produce energy through the chemical reac-
tion of hydrogen and oxygen. A fuel cell
consists of three layers, the anode layer (a
graphite plate), a membrane with catalyst
(often platin) and the cathode layer (again
a graphite plate). Hydrogen is induced at
the anode, oxygen (usually as part of the
air) at the cathode. The hydrogen is de-
composed into protons and electrons. Then
the protons move through the semiperme-
able membrane towards the cathode. This
leads to an electric potential which drives
the electrones through a wire which connects
the anode and the cathode. At the cathode
the electrones, protons and the oxygen react
to water. As a byproduct heat is generated.

To increase the electric power many fuel cells are connected in series and build a fuel
cell stack. For a fuel cell stack, the release of energy is maximal if one can distribute these
reactions equally into a stack. Areas of too high reactivity lead to higher temperature
and destroy the electrolyte membrane (’burn out’) whereas areas of lower reactivity do
not achieve their capacity. A reason for different reactivity may be a non-homogeneous
supply of hydrogen and oxygen.
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Figure 1.2: Stack consisting of 8 fuel
cells, with courtesy by TomoScience GbR,
Wolfsburg.

One basic problem for fuel cells is to get infor-
mation about the reactivity which is propor-
tional to the local current density. The best
way would be to measure the current distri-
bution at sufficiently many positions inside a
fuel cell. This is carried out by different seg-
mentation methods, where the fuel cell is seg-
mented into a number of segments in which
the current distribution is electrically mea-
sured. Of course, by segmenting a fuel cell
the original current distribution of a standard
fuel cell is changed and it is not clear today
whether the current distribution of segmented
fuel cells do reflect the true current distribu-
tion in unsegmented fuel cells.

The idea of magnetic tomography is to reconstruct the current distribution from its
magnetic field measured in the exterior Be of the fuel cell stack B. Currents and their
magnetic fields are related by Maxwell’s equations. Since the currents in fuel cells are
constant in time, we are interested in the electrostatic case. The electrostatic Maxwell
equations

curlE = 0, div D = ρ, (1.1)

curlH = j, div B = 0 (1.2)

are complemented by the material equations

D = εε0E, B = µµ0H. (1.3)

For a simplier analysis we will restrict our attention to the case of material constants
ε ∈ R+ in B and µ = 1 in all R3. In particular, the fuel cell stacks are not allowed to
consist of magnetisable materials like iron which is the main restriction in praxis. With
these assumptions the magnetic Maxwell equations (1.2) reduce to

div H = 0, curlH = j inB, (1.4)

div H = 0, curlH = 0 inBe. (1.5)

We will derive a phenomenological model for the currents in a fuel cell stack in Section
2.3.1. Modelling the chemical processes in the stack on a macroscopic scale by some
effective conductivity σ we work with an anisotropic impedance problem and develop a
variational theory for its solution. We will call currents jσ which solve the anisotropic
impedance problem ohmic currents.
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The magnetic field H of some current distribution j in a subset B of R3 is given by
the Biot-Savart’s law

H(x) =
1

4π

∫
B

j(y)× x− y

|x− y|3
dy, x ∈ R3. (1.6)

In the easiest case for fuel cell stacks, the set B is a simply-connected rectangular area in
R3, i.e. a simply-connected domain with a connected Lipschitz surface. For this reason we
will work with trace operators on Lipschitz surfaces in parts of our analysis. The current
distribution j is a three-dimensional vector field with cartesian components jk, k = 1, 2, 3.
By div curlH = 0 via (1.4) we consider currents j with free divergence. Measurements
are taken on the boundary ∂G of some domain G which contains the closure B of B in
its interior. Following equation (1.6), the mapping of the current distribution onto its
magnetic field is described by the Biot-Savart integral operator

(Wj)(x) :=
1

4π

∫
B

j(y)× x− y

|x− y|3
dy, x ∈ ∂G. (1.7)

A basic task of magnetic tomography is the investigation of the properties of the integral
operator W and the related Biot-Savart integral equation

Wj = H. (1.8)

The reconstruction problem to determine j from H naturally leads to a number of basic
questions.

1. Given some magnetic field, is it possible to uniquely reconstruct the original current
distribution j which generated H, i.e. is W injective or does W have a non-trivial
nullspace N(W)?

2. If N(W) is non-trivial, can the space be explicitly characterized, i.e. is it possible to
describe N(W) without using the operatorW? In general terms we ask for functions
which do not generate a magnetic field in the exterior of B.

3. Is the reconstruction of j from H stable? How can we stabilize the calculation of j?

First, the authors Kress, Kühn and Potthast have shown in [KKP] that the nullspace of
W is non-trivial and contains the set of all compactly supported vector fields which arise
from an component-wise application of the Laplace operator to some sufficiently smooth
vector field {

j = 4m | m ∈ C2
0(B)

}
. (1.9)

Second, the characterization of N(W) will be carried out in Section 2.2.1 of this work.
We will show that the nullspace N(W) is given by the set{

curlv | v ∈ H1
0(B), div v = 0

}
. (1.10)
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Third, the Biot-Savart integral operator considered as an operator L2(B) → L2(∂G) has
an analytic kernel. Thus, the Biot-Savart integral operator W is compact, the integral
equation (1.8) is ill-posed, and the inverse W−1 cannot be bounded. An application of
an unbounded operator to data with measurement errors usually leads to reconstructions
which are tampered and do not reflect the true solution. Even small errors in the data
may be amplified to uncontrolled errors in the reconstructions. Thus, we need to employ
an appropriate stabilization for the solution of the equation.

A well known regularization method for linear integral equations with compact inte-
gral operator is the Tikhonov regularization which calculates an approximate solution to
equation (1.8) by

jα := (αI +W∗W)−1W∗H (1.11)

with regularization parameter α > 0. We sum up the relevant facts in Section A.1. Since
the operator W∗ maps L2(∂G) onto N(W)⊥, the reconstructed current density jα is in the
orthogonal space N(W)⊥ to the nullspace N(W). This leads to the following important
questions for magnetic tomography.

4. Can we explicitly characterize the orthogonal space N(W)⊥? In general terms we
ask: which functions (or equivalence classes of functions) do generate a magnetic
field outside?

5. What is the relation of ohmic currents to the nullspace N(W) and its orthogonal
space N(W)⊥?

The characterization of the orthogonal space N(W)⊥ will be achieved in Sections 2.2.2
and 2.2.3. We will show that

N(W)⊥ =
{
j ∈ Hdiv=0(B) | ∃q ∈ L2(B) : curl j = grad q

}
, (1.12)

in particular, we show that the components of j ∈ N(W)⊥ are solutions to the Laplace
equation in a weak sence. Under the assumption of more regularity, the elements of this
space are described as solutions to special boundary value problems.

The question 5 is answered in Section 2.3.2, where the orthogonality relation

jσ ⊥σ−1 N(W) (1.13)

with the orthogonality ⊥σ−1 with respect to the scalar product

〈u,v〉σ−1 :=

∫
B

σ(y)−1u(y) · v(y) dy (1.14)

is proven for ohmic current densities jσ. If σ is a multiple of the identity matrix, then
this scalar product reduces to the ordinary L2-scalar product and in this case the ohmic
current would be in N(W)⊥, i.e. in principle we would be able to fully recover the true
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current density. For small perturbations of such a uniform conductivity by continuity of
the scalar product we can expect reasonable reconstructions of the true currents.

To prove the reconstuctability of faults in a fuel cell stack we have both carried out
numerical investigations and real data reconstructions with wire grids and fuel cells 1.
Some results for real data reconstructions are exemplarily documented in Section 2.3.3.

Figure 1.3: Fuel cell, wire grid model and measurement device for magnetic tomography,
with friendly permission by TomoScience GbR, Wolfsburg.

So far, we have worked with measurements of the full magnetic field H on the surface
∂G. Both from a practical and theoretical viewpoint we are lead to another natural
question.

6. How much data do we need to measure on ∂G to uniquely determine the magnetic
field H in the exterior Be?

The sixth question is investigated in Section 2.4. We first show that the boundary
values of H on ∂G uniquely determine the magnetic field in Be. Second, we investigate
the situation where the normal of the current density j is known on ∂B. Then, the normal
component of H uniquely determines the magnetic field in Be, i.e.

ν · j|∂B and ν ·H|∂G determine H in Be. (1.15)

Third, it is proven that the knowledge of the tangential components of H on ∂G is
sufficient for the calculation of H in the exterior. For the latter case we show that the
tangential components ν × H on ∂G already determine the normal components of the
current density on ∂B, i.e.

ν ×H|∂G determines H in Be and ν · j|∂B. (1.16)

1Grid reconstructions have been performed in collaboration with TomoScience GbR, Wolfsburg. Mea-
surements on real fuel cells have been done at the Research Center Jülich, again in collaboration with
TomoScience.
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This result shows the redundance of some of the information used in magnetic tomography,
where usually the divergence equations and the normal component ν · j are exploited in
reconstruction algorithms to enhance the quality of the reconstructions.

In the first part of this work we have considered the general magnetic tomography
problem where the task is to reconstruct currents from measured magnetic fields. It is
shown that this reconstruction has a large nullspace and, in general, it is not possible to
reconstruct conductivities from the knowledge of the magnetic field in the exterior domain
Be. This leads to the following two further scientific problems.

First, from other parts of the area of inverse problems it is well known that the
reduction of some general reconstruction problem to some particular reduced shape re-
construction problem may yield much better results and uniqueness statements. For this
reason in the second part we will study the case where the conductivity takes two different
constant values in B \D and D with some subdomain D ⊂ B.

Second, appropriate measurements of the magnetic field on some surface ∂G do de-
termine H in Be, but in general they do not determine H in the interior B. However,
it is reasonable to generate more data and, thus, improve the reconstructability by the
measurement of further physical quantities. For the application with fuel cell stacks, the
electrical potential on the surface of the stack can be measured and we will provide this
additional data

ν × E|∂B. (1.17)

It opens the possibility to obtain field reconstructions of H in some subsets of B and shape
reconstructions of D by the application of methods from other areas of inverse problems
for partial differential equations.

As a preparation for the analysis of the inverse problems and as a basis for numerical
simulations we investigate the transmission impedance problem in Section 3.1.1. The
case of the Neumann boundary condition is treated in Section 3.1.2. For both cases
the representation of the magnetic field H in R3 by the Biot-Savart integral operator is
transformed into a boundary-layer representation

H = (σB − σD) ~SD(ν × E)− σB
~SB(ν × E) (1.18)

with the single layer potential operator

( ~SGt)(x) :=
1

4π

∫
∂G

1

|x− y|
t(y) ds(y), x ∈ R3 (1.19)

for some domain G with sufficiently smooth boundary. The numerical implementation of
the impedance problem and the boundary potentials is described in Section 3.1.3.

The basic idea of the point source method for field reconstructions is the approximation
of the fundamental solution

Φ(x, y) =
1

4π

1

|x− y|
(1.20)
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in appropriate field representations and the use of this approximation to replace unknown
integral terms by functions of measured quantities. For magnetic impedance tomography,
a representation of the magnetic field is provided by (1.18). Here, the domain D and

ν×E|∂D are unknown. It is worked out in Section 3.2.1, how the term (σB−σD) ~SD(ν×E)
can be calculated from the knowledge of H|∂B and ν ×E|∂B via some approximation of Φ
by a single-layer potential over ∂B.

A numericl study of the field reconstructions by the point source method is provided
in Section 3.2.2. In particular, we demonstrate the pointwise error in the field recon-
structions and prove that the point source method is a reasonable method for stable field
reconstructions in magnetic tomography.

For general transmission problems with some inclusion D, the magnetic field does not
uniquely determine the shape of the inclusion D, since the field alone does not provide
any criterion to detect the location of ∂D. Thus, for the shape reconstruction, we will
investigate the adaption of the no response test introduced by Luke and Potthast [LuPo]
for acoustic scattering problems to the magnetic tomography problem. The basic idea of
the no response test also starts from (1.18). We multiply the equation by a function a(x),
x ∈ ∂B and integrate over ∂B to obtain∫

∂B

(
H(x) + σB

~SB(ν × E)
)
a(x) ds(x) = (σB − σD)

∫
∂D

v(y)(ν × E)(y) ds(y) (1.21)

with

v(y) :=

∫
∂B

Φ(x, y)a(x) ds(x), y ∈ B. (1.22)

The integral (1.21) is called the response for probing with the function v or density a,
respectively. Given some test domain G ⊂ B we show in Section 3.2 that it is possible
to choose the density a such that v is small on G and has large variations outside of G.
Thus, if D ⊂ G, then also the above response (1.21) is small. In general, if D 6⊂ G, the
response is not small. The no response test reconstructs the unknown scatterer as the
intersection of test domains such that the response is smaller than some given treshold.

We describe the detailed algorithm of the no response test in and provide numerical
examples for reconstructions Sections 3.3.1 and 3.3.2. In particular, the results show
that the no response test can be used to calculate reasonable shape reconstructions for
the inverse transmission problem and inverse Neumann problem of magnetic impedance
tomography.

During the study of the Biot-Savart operator we have published three papers [KüPo],
[KKP], and [HKP] representing the status at that time. In [KKP] we have shown that the
nullspace is not trivial and have characterized the nullspace under the assumption that
the current distribution is based on a conductivity distribution by Ohm’s law. Further-
more, we have described a method to reconstruct the current distribution using Tikhonov
regularization. The underlying numerical results such as convergence and stability of
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finite integration techniques applied to magnetic tomography are published in [KüPo].
In [HKP] we have fully characterized the nullspace of the Biot-Savart operator and its
orthogonal complement which is the contents of the Section 2.2. Moreover, we have given
two examples for an element of the nullspace and an element of its complement in this
paper.

A first theoretical result of magnetic tomography was reached by Banks and Ko-
jima [BaKo]. They considered a homogeneous conductor in two dimension with a non-
conducting inclusion and tried to detect the boundary curve of the inclusion by minimiza-
tion of a fit-to-data scalar function.

Magnetic tomography is not only used for monitoring the current distributions in
fuel cells and accumulators, respectively. Another approach is biomagnetic imaging, i.e.
the visualisation of currents inside a body (especially brain) from their magnetic field.
A detailed introduction into the physics is given by Sarvas [Sa]. He models currents
from electromotive forces impressed by biological activities. He reduces the problem
to a piecewise constant conductivity distribution and consider a Poisson equation with
transmission boundary conditions. Tilk and Wach [TiWa] followed this approach and
solved the inverse problem by using a regularization scheme as Wiener filter estimation.
Further problems on reconstructing currents on surfaces in the brain are treated by Ramon
et. al. [Ra1] and [Ra2]. There is a large number of papers on reconstructing magnetic
sources in cardiomagnetic inverse problems. As an example we refer to Stroink [Str] and
the literature cited therein. Further application fields are geophysics and solar physics
where the currents are reconstructed from magnetic satellite data.

A large part of this work has been developed in a cooperation project of the Young
Researchers Group ”New numerical methods for inverse problems” at the Faculty of Math-
ematics of the University of Göttingen with the TomoScience GbR (formerly Xcellvision),
Wolfsburg. The main task was to build up a measurement device for magnetic fields of
fuel cell stacks and to reconstruct the current distributions inside the stacks. Besides
physical problems such as magnetism and magnetisability of some materials the typi-
cal mathematical problems have arised which we have formulated in the questions 1-6.
The chief executive of TomoScience, Dr. Ing. Karl-Heinz Hauer, contacted the young re-
searcher group and a very sucessful collaboration has developed. Here at this stage, I
explicitly thank Karl-Heinz Hauer for the cooperation, and Roland Potthast, the leader
of the young researcher group and my doctoral advisor. Both have provided me with the
oppertunity to write my dissertation in a field of practical importance.

I would also like to thank all the members of the Institute for Numerical and Applied
Mathematics for their support of this dissertation. In particular, I profited by the excellent
support of the system administrators Dr. G. Siebrasse and R. Wassmann. Last but not
least I thank Prof. Dr. Rainer Kress as the second corrector. He was the tutor of my
diploma thesis and, during the study of mathematics, he has introduced me into the
fields of inverse problems and boundary integral equations.
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1.2 Spaces on Lipschitz Domains

In this section we introduce the spaces we require for our analysis. We base our consid-
erations on the concepts of Sobolev spaces. A very detailed treatment can be found in
[Ad] or [Gri], where the generalized Sobolev spaces Wm,p(B) are investigated. We restrict
our attention to the case p = 2 with the notation Hm = Wm,2(B). We begin with scalar
function spaces and afterwards we turn to the spaces of vector fields. Basically in this
text, we assume B to be a bounded connected domain with a connected boundary ∂B.
The boundary ∂B is Lipschitz continuous. If we require unbounded domains or more
regularity on ∂B, we indicate it at the corresponding positions.

We start with introducing continuous functions and the declaration of the regularity
of a boundary ∂B in our first subsection. In Subsection 1.2.2 we introduce the Sobolev
spaces Hm(B). In order to extend the classical potential theory we sum up denseness
results and imbedding theorems in Subsection 1.2.3. Finally, we provide the spaces of
vector fields which we need for the analysis of the Biot-Savart operator in Subsection
1.2.4.

1.2.1 Continuous Functions and Boundary Regularity

As basic spaces we need the linear space C∞0 (B) of infinitely differentiable functions with
compact support in B, and

C∞(B) :=
{
u|B | u ∈ C∞0 (R3)

}
, (1.23)

the ristriction on B of all functions with compact support in R3. We recall the space
C0(B) of continuous functions defined in B and

Cm(B) :=
{
u ∈ C0(B) | ∂αu ∈ C0(B), ∀|α| ≤ m

}
, (1.24)

the space of m-times continuously differentiable functions. Here, we use the multi-indices
α = (α1, . . . , αN) ∈ NN with |α| :=

∑N
i=1 αi and the usual notation of derivatives

∂αu :=
∂|α|u

∂α1u . . . ∂αNu
. (1.25)

We remark that Cm(B) functions are not necessarily bounded and introduce Cm(B) as
the space of all functions u ∈ Cm(B) with bounded and uniformly continuous derivatives
∂αu, ∀|α| ≤ m. The space Cm(B) equipped with the norm

‖u‖Cm(B) :=
m∑

i=0

sup
x∈B

sup
|α|=i

|∂αu(x)| (1.26)

is a Banach space. Sometimes we need more than simple continuity. Let 0 < r ≤ 1 and
u be a function defined on B. If the expression

sup
x,y∈B
x6=y

|u(x)− u(y)|
|x− y|r

(1.27)
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is finite, we call u Hölder continuous with exponent r. Especially, for r = 1, we call u
Lipschitz continuous. Clearly, if u is Hölder continuous, then u is continuous in B. We
denote the linear space of Hölder continuous functions by C0,r(B). We say u is locally
Hölder continuous with exponent r, if expression (1.27) is finite on compact subsets of B
and denote this space by C0,r(B). In a certain sense, Hölder continuity may be viewed
as fractional differentiability. This suggests a widening of the known spaces of differen-
tiable functions. The Hölder spaces Cm,r(B) and Cm,r(B) are defined as the subspaces
of Cm(B) and Cm(B) consisting of functions whose m-th order partial derivatives are
Hölder continuous. By setting

Cm,0(B) = Cm(B), Cm,0(B) = Cm(B)

we may include the spaces of m-times differentiable functions among the Hölder spaces.
The Hölder spaces are Banach spaces with norm

‖u‖Cm,r(B) := ‖u‖Cm(B) + sup
|α|=m

sup
x,y∈B
x6=y

|∂αu(x)− ∂αu(y)|
|x− y|r

. (1.28)

Now, we are able to give a definition for what we mean by the regularity of the boundary
∂B. By the following one we view ∂B locally as a two dimensional submanifold of R3.

Definition 1.1 Let B be an open subset of R3. We say ∂B is continuous (resp. Lipschitz
continuous, of class Cm, of class Cm,1 for some m ∈ N0) if for every x ∈ ∂B exists a
neighborhood Ω(x) in R3 and new coordinates y = (y1, y2, y3) such that

• Ω(x) is a hypercube in the new coordinates

Ω(x) =
{
y = (y1, y2, y3)

t | − ai < yi < ai, i = 1, 2, 3
}
. (1.29)

• There exists a continuous (resp. Lipschitz continuous, Cm, Cm,1) function f defined
in

Ω̃(x) =
{
ỹ = (ỹ1, ỹ2)

t | − ai < ỹi < ai, i = 1, 2
}

(1.30)

that satisfies |f(ỹ1, ỹ2)| ≤ a3

2
, ∀(ỹ1, ỹ2) ∈ Ω̃(x) and

B ∩ Ω(x) = {y | y3 < f(y1, y2)} , ∂B ∩ Ω(x) = {y | y3 = f(y1, y2)} . (1.31)

Here, ∂B is represented by the mapping F (y1, y2) = (y1, y2, f(y1, y2)) from Ω̃(x) onto
∂B ∩ Ω(x). Its regularity is determined by that of f . Basically in this work, we consider
a Lipschitz continuous boundary ∂B, i.e. f is Lipschitz continuous.
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1.2.2 Sobolev Spaces

A measurable function on B is the equivalence class of functions which differs only on a
subset of measure zero. By Lp(B), p ≥ 1 we denote the space consisting of measurable
functions f on B for which

‖f‖Lp(B) :=

∫
B

|u|p dx

 1
p

(1.32)

is finite. This expression defines a norm on Lp(B), and Lp(B) is a Banach space with
respect to (1.32). For p = ∞ we declare L∞(B) as the space of bounded functions on B
with norm

‖f‖L∞(B) := ess sup
B
|u|. (1.33)

Let C∞0 (B)∗ be the dual space of C∞0 (B) which is often called the space of distributions on
B, and 〈., .〉 the duality pairing between C∞0 (B) and C∞0 (B)∗. If u is a locally integrable
function, then u can be identified with a distribution by

〈u, v〉 =

∫
B

uv dx, ∀v ∈ C∞0 (B). (1.34)

Consider L2(B) and its scalar product 〈u, v〉L2(B) =
∫

B
uv dx. We define the weak deriva-

tive (also called ∂α) by

〈∂αu, v〉 = (−1)|α|〈u, ∂αv〉, ∀v ∈ C∞0 (B). (1.35)

If u is α-times differentiable, the weak derivative definition coincides with the classical
definition. Now, we are able to introduce the Sobolev spaces with m ∈ N0 by

Hm(B) :=
{
u ∈ L2(B) | ∂αu ∈ L2(B), ∀|α| ≤ m

}
, (1.36)

especially H0(B) = L2(B). Hm(B) is a Hilbert space with the scalar product

〈u, v〉Hm(B) :=
∑
|α|≤m

∫
B

∂αu ∂αv dx. (1.37)

We denote the corresponding norm by ‖.‖Hm(B). By the next definition we extend the
Sobolev spaces Hm(B) to non-integer values of m.

Definition 1.2 Let s > 0 and s = m + r with m ∈ N0 and 0 < r < 1. We denote by
Hs(B) the space of all functions u of Hm(B) such that∫

B

∫
B

|∂αu(x)− ∂αu(y)|2

|x− y|3+2r
dx dy <∞, ∀|α| = m. (1.38)
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The expression (1.38) is often called Slobodeckii seminorm. It can be shown that Hs(B)
is a Hilbert space with the scalar product

〈u, v〉Hs(B) := 〈u, v〉Hm(B) +
∑
|α|=m

∫
B

∫
B

〈∂αu(x)− ∂αu(y), ∂αv(x)− ∂αv(y)〉
|x− y|3+2r

dx dy. (1.39)

Thus, we have found a way to declare the Sobolev spaces Hs(B) for each non-negative s.
If s is an integer we define Hs(B) via (1.36) otherwise Hs(B) is defined by Definition 1.2.

Remark 1.3 The reader who is familiar with Sobolev spaces notes that there are various
notations and definitions which slightly differ from each other. Following [Ad], page 44
the spaces are declared by

• Wm,2(B) := {u ∈ L2(B) | ∂αf ∈ L2(B), ∀|α| ≤ m},

• Hm,2(B) is the completion of
{
u ∈ Cm(B) | ‖u‖Hm(B) <∞

}
with respect to the

norm ‖.‖Hm(B) induced by (1.37).

MEYERS and SERRIN [MeySe] have shown that both definitions are equivalent for a
Lipschitz domain B ⊂ R3. Of course, there are also several ways to introduce the Sobolev
spaces for fractional m. The classical definition of Sobolev spaces is based on the Fourier
transform

(Ff)(ξ) :=
1

(2π)3/2

∫
R3

f(x)e−ixξ dx, ∀ξ ∈ R3 (1.40)

and given by

Hs(R3) :=
{
u ∈ L2(R3) | (1 + ξ2)s/2Ff ∈ L2(R3)

}
, s ≥ 0 (1.41)

and
Hs(B) :=

{
u ∈ L2(B) | ∃û ∈ Hs(R3) with û|B = u

}
, s ≥ 0. (1.42)

We note that this definition makes no difference between integer and non-integer values
of s. In the case of a Lipschitz domain B both definitions are equivalent (see Theorem
3.18 and 3.30 in [McL] or Lemma 1.3 in [GiRa]).

In order to introduce H−s(B), s > 0 we use define

Hs
0(B) := C∞0 (B)

Hs(B)
, (1.43)

i.e. Hs
0(B) is the closure of C∞0 (B) with respect to the norm ‖.‖Hs(B). We characterize

the space H−s(B) as follows

H−s(B) := Hs
0(B)∗, provided s 6= {1

2
,
3

2
,
5

2
, . . .}. (1.44)

It means that H−s(B) is the dual space of Hs
0(B) equipped with the norm

‖f‖H−s(B) := sup
u∈Hs

0(B)

‖u‖Hs
0(B)=1

〈f, v〉. (1.45)
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Remark 1.4 A detailed treatment of the dual space and the exceptional cases for s can
be found in [McL], Chapter 3. Here we give a short summary. Defining

H̃s(B) := C∞0 (B)
Hs(R3)

(1.46)

we state for a Lipschitz domain B and s ∈ R

H−s(B) = H̃s(B)∗ and Hs(B)∗ = H̃−s(B) (1.47)

(see Theorem 3.30 in [McL]). The spaces Hs
0(B), s > 0 and H̃s are related by

H̃s(B) = Hs
0(B) provided s 6= {1

2
,
3

2
,
5

2
, . . .} (1.48)

(see Theorem 3.33 in [McL]) and

H̃s(B) = Hs
0(B) = Hs(B), 0 ≤ s ≤ 1

2
(1.49)

(see Theorem 3.40 in [McL]).

For many applications we want to exclude the constant functions from our considera-
tion. We manage it by the notation

H2
◦ (B) =

u ∈ Hs(B) |
∫
B

u dx = 0

 . (1.50)

For our further analysis we need the Sobolev spaces on boundaries. Definition 1.1 has
declared the regularity of boundaries, so we are able to define the space Hs(∂B) by the
following definition.

Definition 1.5 Let B be a bounded simply-connected domain with boundary ∂B of class
Cm,1,m ∈ N0. A function u on ∂B belongs to Hs(∂B) for s ≤ m + 1 if u ◦ F belongs to
Hs(Ω̃)∩F−1(∂B∩Ω) for all possible Ω and F fulfilling the assumptions of Definition 1.1.

Since the resulting Hilbert norm from this definition would be hard to handle, we shall
use equivalent norms as for instance for s = 0

‖u‖2
L2(∂B) :=

∫
∂B

|u|2 ds, (1.51)

where ds denotes the surface measure of ∂B. Other equivalent scalar products for specific
Sobolev spaces will be obtained when we investigate the trace operators (see Section 1.3).
At this stage, it is worthwile to point out that the theorems of this section are also valid
for the Sobolev spaces Hs(∂B). In particular, we also use the notation

H2
◦ (∂B) =

u ∈ Hs(∂B) |
∫
∂B

u ds = 0

 (1.52)

to exclude constant functions (for negative s the condition is to be understand in the
sence of 〈u, 1〉 = 0).
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1.2.3 Denseness and Imbedding Theorems

There is a varity of inclusion, denseness and imbedding theorems in the literature. Here,
we want to tailor these theorems to our case of Lipschitz domains and Sobolev spaces
Hs(B). In the proofs, we cite the corresponding theorems given in the literature. We
start with some simple inclusions.

Theorem 1.6 For a bounded Lipschitz domain B ∈ R3, there hold the inlusions

C∞(B) ⊂ Cn(B) ⊂ Cm(B) ⊂ Ha(B) ⊂ Hb(B) (1.53)

and
C∞0 (B) ⊂ Cn(B) ⊂ L∞(B) ⊂ L2(B) ⊂ L1(B) (1.54)

with n,m ∈ N0 and real values a, b ∈ R satisfying n ≥ m ≥ a ≥ b.

Proof: At first we prove the statement (1.53). The inclusions C∞(B) ⊂ Cn(B) ⊂
Cm(B) are trivial. Let l ∈ N0 with m ≥ l ≥ a. Then for all u ∈ Cm(B) we have
∂αu ∈ C0(B) ⊂ L2(B),∀|α| ≤ l by the definition of the partial derivatives. Therefore,
Cm(B) ⊂ H l(B). Since Ha(B) ⊂ Hb(B) for all real values a, b with a ≥ b (see for instance
[McL], Theorem 3.27), all of the following inclusions are shown

C∞(B) ⊂ Cn(B) ⊂ Cm(B) ⊂ H l(B) ⊂ Ha(B) ⊂ Hb(B).

In the second statement the inclusion C∞0 (B) ⊂ Cn(B) is obvious. If u ∈ Cn(B) we have
supB |u| ≤ ∞ and thus u ∈ L∞(B). For u ∈ L∞(B) holds ‖u‖L2(B) ≤ C supB |u| where C

is the volume of B. With the aid of the estimation ‖u‖L1(B) ≤
√
C‖u‖L2(B) we conclude

L2(B) ⊂ L1(B) and the proof is complete.

Theorem 1.7 For a bounded Lipschitz domain B ⊂ R3 holds

• C∞(B) ∩Hs(B) is dense in Hs(B) for all s ≥ 0.

• C∞(B) is dense in Hs(B) for all s ≥ 0.

• C∞0 (B) is dense in Hs
0(B) for all s ≥ 0, especially H0

0 (B) = L2(B).

Proof: A proof of the first statement can be found in [GiTr], Theorem 7.9. For the
second one we refer to [Ad], Theorem 3.18. The last statement follows from the definition
of Hs

0(B) for s > 0 and from characterization (1.49) for 0 ≤ s ≤ 1
2
.

From this theorem we conculde that Cn(B)∩C0(B), n ∈ N0 is dense in L2(B). Looking at
the third statement, we have obtained another characterization of L2(B) as the completion
of C∞0 (B) in the L2-norm. As a consequence, the function space Cn

0 (B), n ∈ N0 is dense
in L2(B).
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Before we turn to the Sobolev imbedding theorem we have to declare what we mean
by a continuous imbedding B1 ↪→ B2:

Definition 1.8 (Imbedding) A Banach space B1 is said to be continuously imbedded
in a Banach space B2 if there exists a bounded linear one-to-one mapping B1 ↪→ B2.

Theorem 1.9 (Sobolev Imbedding Theorem) For the following imbeddings we as-
sume B to be a bounded Lipschitz domain in R3.

• Let 1 ≤ q ≤ 6, then
H1(B) ↪→ Lq(B). (1.55)

• Suppose j, k ∈ N0 with 2k > 3, then

Hk+j(B) ↪→ Cj
bnd(B), (1.56)

where Cm
bnd(B) is defined by

Cm
bnd(B) := {u ∈ Cm(B) | ∂αu ∈ L∞(B), ∀|α| ≤ m} . (1.57)

• Suppose j, k ∈ N0 with 2k > 3 > 2k − 2, then

Hk+j(B) ↪→ Cj,α(B), 0 < α ≤ k − 3

2
. (1.58)

Proof: The full theorem and its proof can be found in [Ad], Theorem 5.4 together with
Remark 5.5.

Remark 1.10 For the interested reader we refer to [Ad], Theorem 5.4 and Remark 5.5 to
get a wide overview of this topic. There one can see that the assumption on the domain B
can be weakened in many of the statements, for instance (1.56),(1.58) holds for unbounded
domains and only (1.58) requires a Lipschitz boundary ∂B.

For the weak solutions of boundary value problems we provide well suited spaces. Let
P be a linear (differential) operator defined on C∞(B). If we are able to extend the
domain of P to Hs(B), then we consider the space

Hs
P(B) :=

{
u ∈ Hs(B) | Pu ∈ L2(B)

}
(1.59)

which is a Hilbert space with the Hilbert norm

‖u‖2
Hs
P (B) := ‖u‖2

Hs(B) + ‖Pu‖2
L2(B). (1.60)

Following this idea we consider the Laplacian 4 and define

H1
4(B) :=

{
u ∈ H1(B) | 4u ∈ L2(B)

}
. (1.61)

Theorem 1.11 Let B be a bounded Lipschitz domain, then the space C∞(B) is dense in
H1
4(B).

Proof: See Theorem 1.5.3.9 in [Gri].
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1.2.4 Spaces of Vector Fields

After the introduction of the basic scalar function spaces we turn to the vector field spaces.
The usual way is to declare the product spaces, for instance

Cm,r(B) :=
[
Cm,r(B)

]3
, Hs(B) := [Hs(B)]3 . (1.62)

We denote spaces of scalar functions by script letters and their three dimensional analogon
by bold letters just as done for scalar functions and vector fields. For example, we write
C∞

0 (B),C∞(B),L2(B). To avoid confusions with the magnetic field H, we always note
the order when referring to Sobolev spaces. We remark that Hs(B) is a Hilbert spaces
with the scalar product

〈u,v〉Hs(B) :=
3∑

i=1

〈ui, vi〉Hs(B) (1.63)

for fields u = (u1, u2, u3)
t,v = (v1, v2, v3)

t ∈ Hs(B). In the same manner we declare the
product space of fields on the boundary ∂B. From Defintion 1.1 wee see that Lipschitz
continuous boundaries have almost everywhere a unit vector ν. Thus, we are able to
define L2

t (∂B) as the space of all tangential L2 vector fields on ∂B. Dependent on the
regularity of ∂B it is possible to define surface operators such as surface divergence and
spaces with corresponding properties. We come back to those spaces in Section (2.4).

In addition to the elementary products we need some other spaces for which we now
introduce the concepts of weak divergence and weak curl. For a field u ∈ L2(B) we declare
the weak divergence (also called div u) as the distribution for which∫

B

φ div u dx =

∫
B

u · gradφ dx, ∀φ ∈ C∞0 (B). (1.64)

is satisfied. For a field u ∈ L2(∂B) we identify the weak curl as the distribution (also
called curlu) for which holds∫

B

v · curlu dx =

∫
B

u · curlv dx, ∀v ∈ C∞
0 (B). (1.65)

Of course, if there exist weak derivatives the usual definitions of divergence and curl
coincide with the definitions (1.64) and (1.65). As a consequence, the spaces

Hdiv(B) := {v ∈ L2(B) | div v ∈ L2(B)}, (1.66)

Hcurl(B) := {v ∈ L2(B) | curlv ∈ L2(B)}. (1.67)

are subsets of H1(B). Clearly, the space Hdiv(B) equipped with the scalar product

〈u,v〉Hdiv(B) := 〈u,v〉L2(B) + 〈 div u, div v〉L2(B) (1.68)
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is a Hilbert space. Introducing the subspace Hdiv=0(B) of Hdiv(B) by

Hdiv=0(B) := {v ∈ Hdiv(B) | div v = 0} (1.69)

we recognize that Hdiv=0(B) is a Hilbert space with L2-scalar product. In the same way
Hcurl(B) equipped with the scalar product

〈u,v〉Hcurl(B) := 〈u,v〉L2(B) + 〈 curlu, curlv〉L2(B) (1.70)

is a Hilbert space and

Hcurl=0(B) := {v ∈ Hcurl(B) | curlv = 0} (1.71)

with L2-scalar product is a Hilbert space, too. With the aid of the concepts of weak
divergence and curl we have found two Hilbert spaces equipped with the usual L2-scalar
product. Later, when we need regularization techniques for reconstruction, we are reliant
on Hilbert spaces. Thus, Hdiv=0(B) is an excellent space for our application. The next
theorem shows that smooth functions are dense in both spaces.

Theorem 1.12 Let B be a bounded Lipschitz domain, then the set C∞(B) is a dense
subset of Hdiv(B) as well as of Hcurl(B).

Proof: See Theorem 2.4 and Theorem 2.10 in [GiRa].

From another point of view we have investigated a three dimensional analogon to the
spaces Hs

P(B) from (1.59) with the divergence and curl operator. In the same way we
may introduce

H1
4(B) :=

{
u ∈ H1(B) | 4u ∈ L2(B)

}
. (1.72)

From Theorem 1.11 we know that C∞(B) is dense in H1
4(B).
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1.3 Trace Operators

In this section, we investigate the trace operators often called boundary value operators.
In preparation for the boundary value problems we study their behavior on a boundary
with given regularity.

Definition 1.13 Let φ ∈ C∞(B) be a scalar function and u ∈ C∞(B) a vector field. We
define the trace operators

γ0 : φ 7→ φ|∂B resp. γ0 : u 7→ u|∂B,

∂ν : φ 7→ ∂φ

∂ν
,

γν : u 7→ ν · u|∂B,

γ× : u 7→ ν × u|∂B,

γT : u 7→ ν × u|∂B × ν.

In this text, we always denote ν as the unit outward normal to ∂B. If we distinguish
between trace operators from the interior or exterior, we have to care about the normal
direction. We specify the domain of the trace operators (for instance γν [B], γν [B

e]),
therefore γν [B]u = −γν [B

e]u for a vector field u ∈ C∞(R3). In order to extend the
domains of the trace operators γ0, ∂ν let us consider the mapping

u 7→
{
γ[B]u, γ[B]

∂u

∂ν
, . . . , γ[B]

∂lu

∂lν

}
(1.73)

which is defined for u ∈ Ck,1(B) and ∂B ∈ Ck,1 provided k ≥ l. We quote the basic trace
extension theorem from [Gri].

Theorem 1.14 Let B be a bounded simply-connected domain of R3 with a Ck,1, k ∈ N0

boundary ∂B. Assume that 1
2
< s ≤ k + 1 and s − 1

2
/∈ N0. Let s − 1

2
= l + r with a

non-negative integer l and 0 < r < 1. Then the mapping (1.73) has an unique extension
as an operator from

Hs(B) onto
l∏

j=0

Hs−j− 1
2 (∂B) . (1.74)

Proof: For the proof see Theorem 1.5.1.2 in [Gri].

We explicitly note that the mapping (1.73) is not injective, the following theorem char-
acterizes its kernel.

Theorem 1.15 Let B be a bounded simply-connected domain of R3 with a Ck,1, k ∈ N0

boundary ∂B. Assume that 1
2
< s ≤ k + 1 and s − 1

2
/∈ N0. Let s − 1

2
= l + r with a

nonegative integer l and 0 < r < 1. Then u ∈ Hs
0(B) if and only if u ∈ Hs(B) and

0 = γ[B]u = γ[B]
∂u

∂ν
= · · · = γ[B]

∂lu

∂lν
. (1.75)



1.3 Trace Operators 21

Proof: For the proof we refer to Theorem 1.5.1.6 in [Gri].

Hence, we may give the alternative definitions

H1
0 (B) =

{
u ∈ H1(B) | γ0[B]u = 0

}
, (1.76)

H2
0 (B) =

{
u ∈ H2(B) | γ0[B]u = 0, ∂ν [B]u = 0

}
. (1.77)

While the first relation holds for a Lipschitz continuous boundary, we request a C1,1

boundary ∂B for the second one. We are able to improve the results of Theorem 1.14 for
the trace operators γ0 and ∂ν .

Theorem 1.16 Let B be a Lipschitz domain, then the trace operators

γ0[B] : Hs(B) → Hs− 1
2 (∂B) and γ0[B] : Hs(B) → Hs− 1

2 (∂B) (1.78)

are bounded surjective operators for each s ∈ (1
2
, 3

2
).

Proof: For the proof we refer to Theorem 3.38 in [McL].

Theorem 1.17 Let B be a Lipschitz domain, then the trace operator ∂ν is a bounded
operator

Hs
4(B) → Hs− 3

2 (∂B). (1.79)

for s ∈ (1
2
, 3

2
).

Proof: For the proof we refer to Lemma 4.3 of [Co].

For the rest of this subsection we turn to the normal and tangential components of a
vector field. For a smooth field v in B we have γ0v = γTv+γνv ν. We extent the domain
of the trace operators γν [B], γ×[B] and γT[B] in the following theorem.

Theorem 1.18 The linear operators γν [B], γ×[B], γT[B], can be extended by continuity
to bounded operators

γν [B] : Hdiv(B) → H− 1
2 (∂B), (1.80)

γ×[B] : Hcurl(B) → H− 1
2 (∂B), (1.81)

γT[B] : Hcurl(B) → H− 1
2 (∂B). (1.82)

Proof: The statements (1.80) and (1.81) are shown in Theorem 2.5 and Theorem 2.11
of [GiRa]. The statement (1.82) follows from γT[B]v = γ×[B]v × ν.

We see that ν · j and ν× j are defined in the spaces Hdiv(B) and Hcurl(B) in a weak sense,
that means as extensions of the classical trace operators. For a better readability we keep
writing ∂u/∂ν, ν · u, ν × u instead of the trace operators which considerably shortens the
formulas. Mostly, the meaning can be deduced from the context, but to avoid confusions
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and mistakes we refer to the sense if neccessary. If we explicitly distinguish between the
traces from the exterior or the interior of B then we also use the notations ν+ ·u or ν−×u.

Again, we build the closure of C∞
0 (B) with respect to the norms ‖.‖Hdiv(B) and

‖.‖Hcurl(B) and define

H0,div(B) := C∞
0 (B)

Hdiv(B)
, H0,curl(B) := C∞

0 (B)
Hcurl(B)

. (1.83)

Theorem 1.19 The operator γν [B] : Hdiv(B) → H− 1
2 (∂B) is surjective. Its kernel is

given by H0,div(B).

Proof: For the nullspace statement we refer to Theorem 2.6 in [GiRa]. The proof of the
range can be found in [GiRa], Corollary 2.8.

Theorem 1.20 The nullspace of the operators γ×[B], γT[B] : Hcurl(B) → H− 1
2 (∂B) is

given by H0,curl(B).

Proof: See Theorem 2.12 in [GiRa].

There exists a similar result for the surjectivity of γT[B]. We present it in Section 2.2.3
after the introduction of spaces with surface divergence on a C2-boundary. Similar to the
characterization of Hm

0 (B) we are able to identify

H0,div(B) = {u ∈ Hdiv(B) | ν · u = 0}, (1.84)

H0,curl(B) = {u ∈ Hcurl(B) | ν × u = 0}. (1.85)

We complete this subsection by a regularity result.

Theorem 1.21 Let B be a bounded simply-connected domain of R3 with a Cm,1-boundary
∂B with a non-negative integer m. We have

Hm(B) = {v ∈ L2(B) | curlv ∈ Hm−1(B), div v ∈ Hm−1(B), ν ·v ∈ Hm− 1
2 (∂B)} (1.86)

with the norm inequality

‖v‖Hm(B) ≤ C{‖v‖L2(B) + ‖ curlv‖Hm−1(B) + ‖ div v‖Hm−1(B) + ‖ν · v‖
Hm− 1

2 (∂B)
}. (1.87)

Proof: See Corollary 3.7 in [GiRa].
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1.4 Potential Theory

The goal of this section is to summarize basic results from potential theory, i.e. the theory
of harmonic functions and vector fields. An detailed introduction into classical potential
theory can be found in [Kr] or [CK1]. The theory of harmonic vector fields is presented
in [Ma]. We call a function u strong or classical harmonic if it fulfills the Laplace equation

4u(x) = 0 (1.88)

pointwise with the Laplace operator defined by

4 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. (1.89)

For a (weak) harmonic function u, the Laplace equation 4u = 0 holds as equation in the
Sobolev space Hs(G) with a domain G ∈ R3, i.e. the Laplace operator is considered as
mapping Hs+2(G) → Hs(G). We call a vector field u strong or classical harmonic if it
fulfills

curlu = 0, div u = 0. (1.90)

pointwise and (weak) harmonic if the equations hold as equations in appropriate Sobolev
spaces. The formula curl curl = −4 + grad div implies 4u = 0 for a harmonic field
u, i.e. a harmonic field has harmonic components. Please note that fields with harmonic
components need not be harmonic themselves.

We will show that the exterior magnetic field is a vector field with harmonic com-
ponents in Be. Thus, in preparation for the analysis of the Biot-Savart operator, we
investigate Gauss’ and Stokes theorems as well as Green’s identities in the next Subsec-
tion 1.4.1. Measuring the magnetic field components on a surface ∂G with a domain G
that contains B we obtain a boundary value problem for the exterior magnetic field. In
order to calculate the exterior magnetic field from various boundary data we study the
basic boundary value problems for the Laplace equation in Subsection 1.4.2. In Subsec-
tion 1.4.3 we introduce the single, double, and volume potentials. On the one hand, if
∂B ∈ C2, we are able to represent the solution of the boundary value problems in Sub-
section 1.4.2 in terms of single and double layer potentials on ∂B which is carried out in
Section A.3 and A.4. On the other hand, the magnetic field of an ohmic current based on
a piecewise constant conductivity can be represented in terms of single layer potentials,
see Section 3.1. At the end of this section, we investigate the vector potentials for free
vector fields with free divergence and the Helmholtz decomposition of vector fields.

1.4.1 Green’s Representation Formulas

The classical Gauss’ divergence and Stokes’ theorems hold for smooth boundaries and
fields. Here, we need these results in the framework of Lipschitz boundaries and the
Sobolev spaces. To this end we present the standard extension technique for further use.
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Gauss’ divergence theorem ∫
B

div u dx =

∫
∂B

ν · u ds (1.91)

holds for fields u ∈ C∞(B). The left side is a linear continuous mapping Hdiv(B) → R.
With the aid of the linear continuous trace operator γν [B] the right side can be written

as 〈γν [B]u, 1〉 in the sense of the dual system 〈H− 1
2 (∂B), H

1
2 (∂B)〉, i.e. it is also a linear

continuous mapping Hdiv(B) → R. Since C∞(B) is dense in Hdiv(B), there exists a
sequence (un)n∈N ⊂ C∞(B) with un → u, n → ∞ for every u ∈ Hdiv(B). Then, we
derive ∫

B

div u dx =
∫
B

div lim
n→∞

un dx = lim
n→∞

∫
B

div un dx = lim
n→∞

∫
B

γν [B]un dx

=
∫
B

γν [B] lim
n→∞

un dx =
∫
B

ν · u dx.

Therefore, the equation (1.91) is true for all u ∈ Hdiv(B).
Let us consider the formula div (φu) = u · gradφ + φ div u which can be applied to

u ∈ C1(B), φ ∈ C1(B). Integration over B and an application of Gauss’ divergence
theorem for the field φu yield∫

B

gradφ · u dx+

∫
B

φ div u dx =

∫
∂B

φ ν · u ds. (1.92)

The terms on the left are well defined and linear bounded operatorsH1(B)×Hdiv(B) → R.
The right side is a linear bounded mapping H1/2(∂B) × H−1/2(∂B) → R. Altogether,
we are able to extend this relation to functions φ ∈ H1(B) and fields u ∈ Hdiv(B) by
the dense approximation technique. The relation (1.92) and all of the following formulas
of vector analysis and of partial differentiation including their extensions are listed in
Section A.5 (for instance the equation (1.92) can be found in (A.75)). This table shall
be a reference, it contains well known rules and their weak forms which we prove in this
work.

The next theorems summarize the basic facts from potential theory.

Theorem 1.22 (Green’s Identities) Green’s first identity∫
B

u4v + gradu · grad v dx =

∫
∂B

u
∂v

∂ν
ds (1.93)

and Green’s second identity∫
B

u4v − v4u dx =

∫
∂B

u
∂v

∂ν
− v

∂u

∂ν
ds (1.94)

hold for u, v ∈ C2(B) ∩ C1(B).
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Proof: For Green’s first identity we apply Gauss’ divergence theorem to the field u grad v
and use div (u grad v) = gradu· grad v+u4v. For Green’s second identity we use Green’s
first identity twice, the second time with interchanged u, v, and subtract both results.

Theorem 1.23 (Green’s Representation Formula) Let u ∈ C2(B) ∩ C1(B). Then
we have

u(x) =

∫
∂B

Φ(x, y)
∂u(y)

∂ν
− u(y)

∂Φ(x, y)

∂ν(y)
ds(y)−

∫
B

Φ(x, y)4u dy, x ∈ B, (1.95)

where the fundamental solution to the Laplacian in three dimensions is given by

Φ(x, y) =
1

4π

1

|x− y|
, x 6= y. (1.96)

Proof: Here, we avoid to go into the technical details of the proof. We refer to [GiTr],
pages 17, 18 for instance.

Since ∂ν is a linear bounded operator H1
4(B) → H− 1

2 (∂B) we are able to extend Green’s
first identity to functions u ∈ H1(B), v ∈ H1

4(B). We will extend Green’s representation
formula when we treat the boundary and volume potentials. Setting 4u(x) = 0, x ∈ B
in (1.95) we arive at Green’s representation formula for harmonic functions

u(x) =

∫
∂B

Φ(x, y)
∂u(y)

∂ν
− u(y)

∂Φ(x, y)

∂ν(y)
ds(y), x ∈ B. (1.97)

Since the integrand is infinitely differentiable and, in fact, also analytic with respect to
x, it follows that the harmonic function u is analytic, too. Thus, harmonic functions are
analytic throughout their domain of definition.

Corollary 1.24 For a harmonic function v ∈ C2(B) ∩ C1(B) we have∫
∂B

∂v

∂ν
ds = 0. (1.98)

Proof: Setting u ≡ 1 in (1.93) proves the statement.

A further property of harmonic functions which we often use in our analysis is the
maximum-minimum principle

Theorem 1.25 (Maximum-Minimum Principle) A strong harmonic function on a
domain cannot attain its maximum or its minimum unless it is constant.

Proof: See [Kr], Theorem 6.8.
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Corollary 1.26 Let B be a bounded domain and u be a strong harmonic function in B
and continuous in B. Then u attains both its maximum and its minimum on ∂B.

Just as done for Gauss’ divergence theorem we extend Stokes’ theorem∫
B

curlu dx =

∫
∂B

ν × u ds (1.99)

to fields u ∈ Hcurl(B) where ν × u has to be understood in the sense of γ×[B]u. As an
extension of formula div (u× v) = v curlu− u curlv we have∫

B

v · curlu dx−
∫
B

u · curlv dx =

∫
∂B

γTv · γ×u ds (1.100)

for u ∈ Hcurl(B),v ∈ H1(B) which can be concluded by denseness of C∞(B) in Hcurl(B)
and H1(B), respectively. Again, the expression on the right side has to be understood in

the dual system 〈H 1
2 (∂B), H− 1

2 (∂B)〉.
Subsequently, we state a vector form of Green’s identities.

Theorem 1.27 (Green’s Vector Identities) Let u,v ∈ C2(B)∩C1(B), then we have
Green’s first vector identity∫

B

u · 4v + curlu · curlv + div u div v dx =

∫
∂B

ν · u div v + ν × u · curlv ds (1.101)

and Green’s second vector identity∫
B

u ·4v−v ·4u dx =

∫
∂B

ν ·u div v+ν×u · curlv−ν ·v div u−ν×v · curlu ds. (1.102)

Proof: Consider the field u div v + u × curlv for u,v ∈ C2(B) ∩C1(B). To evaluate
the divergence of this field we use the formulas div (ab) = b · grad a + a div b and
div (a×b) = curl a·b−a· curlb. Inserting the corresponding expressions and subtracting
both results we obtain

div {u div v + u× curlv}
= u grad div v + div u div v − u · curl curlv + curlu · curlv

= u · 4v + div u div v + curlu · curlv, (1.103)

where we additionally used 4v = grad div v − curl curlv. Now, we apply Gauss’ diver-
gence theorem to equation (1.103), and Green’s first vector identity (1.101) is proven. To
verify Green’s second vector identity (1.102) we apply Green’s first vector identity twice,
the second time with interchanged u,v, and subtract both results.
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Now, we may extend Green’s vector identities. For instance, the identity (1.101) holds
for u ∈ Hdiv(B) ∩Hcurl(B) and v ∈ H2(B). Then the terms on the right side have to be
understood in the sense of the trace operators γ0[B], γν [B], γ×[B] and in corresponding
dual systems. Under the given assumption on u and v, these terms are well defined.
In a view of Theorem 1.21, if the regularity of ∂B is C1,1, we may replace the unusual
condition u ∈ Hdiv(B) ∩Hcurl(B) by u ∈ H1(B).

1.4.2 Boundary Value Problems for Laplace’s equation

In preparation for the calculation of the exterior magnetic field from boundary data we
turn our attention to the boundary value problems for the Laplacian. A detailed treatment
of scalar elliptic problems in nonsmooth domains can be found in [Gri]. Here, we focus
on the Laplacian as a very special case of elliptic problems and investigate the interior
and exterior Neumann and Dirichlet boundary value problems. Further, we study two
boundary value problems for harmonic fields.

BVP 1 (Interior Dirichlet problem for Laplace’s equation) Let ∂B ∈ C0,1. For

some given function f ∈ H 1
2 (∂B)

find u ∈ H1
4(B) such

{
4u = 0 in B,
u = f on ∂B.

(1.104)

Theorem 1.28 The interior Dirichlet problem for Laplace’s equation (1.104) has an
unique solution u ∈ H1

4(B).

Proof: See Theorem 2.5.9 in [Ned].

BVP 2 (Interior Neumann problem for Laplace’s equation) Let ∂B ∈ C0,1. For

some given function g ∈ H−1/2
◦ (∂B)

find u ∈ H1
4(B) such

{
4u = 0 in B,

∂u
∂ν

= g on ∂B.
(1.105)

Theorem 1.29 The interior Neumann problem for Laplace’s equation (1.105) with bound-

ary values g ∈ H
−1/2
◦ (∂B) admits an solution u ∈ H1

4(B) uniquely determined up to a
constant.

Proof: See Theorem 2.5.10. in [Ned]

Usually we force uniqueness of the Neumann problem by an additional condition, for
example we require

∫
B
u dx = 0 or

∫
∂B
u ds = 0.
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Next, we turn to the exterior problems. In order to require a certain behavior at
infinity we introduce the weighted Sobolev space for k ∈ N0

W k(Be) =

{
u | (1 + r2)

i−1
2
∂αu

∂xα
∈ L2(Be), |α| = 0, . . . , i , i = 0, . . . , K

}
(1.106)

where r = |x|. We note that C∞(Be) is dense in W k(Be).

BVP 3 (Exterior Dirichlet problem for Laplace’s equation) Let ∂B ∈ C0,1. For

some given function f ∈ H 1
2 (∂B)

find u ∈ W 1(Be) such

{
4u = 0 in Be,
u = f on ∂B.

(1.107)

Theorem 1.30 The exterior Dirichlet problem for Laplace’s equation (1.107) has one
and only one solution u ∈ W 1(Be).

Proof: See Theorem 2.5.14. in [Ned].

BVP 4 (Exterior Neumann problem for Laplace’s equation) Let ∂B ∈ C0,1. For

some given function g ∈ H− 1
2 (∂B)

find u ∈ W 1(Be) such

{
4u = 0 in Be,

∂u
∂ν

= g on ∂B.
(1.108)

Theorem 1.31 The exterior Neumann problem for Laplace’s equation (1.107) has one
and only one solution u ∈ W 1(Be).

Proof: See Theorem 2.5.15. in [Ned].

Remark 1.32 We have introduced the space W 1(B) to control the behavior at infinity of
harmonic functions defined in Be. In general, for a strong harmonic function u, we have
the behavior

u(x) = u∞ + O (|x|−1), (1.109)

∂αu

∂xα
= O (|x|−|α|−1), |α| ≥ 1 (1.110)

with a constant u∞ ∈ R (see Theorem 3.1 of [Ma]). Therefore, if we require a decay
u(x) → 0, |x| → ∞ for a classical solution u of the exterior boundary value problem
(1.107) and (1.108) then u ∈ W 1(B).
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Some simple applications of the Neumann problem for Laplace’s equation are the
following boundary value problems for harmonic vector fields. We make use of the prop-
erties of the scalar potential of a harmonic field which exists since B is a simply-connected
domain.

Theorem 1.33 A field u ∈ L2(B) satisfies

curlu = 0 in B (1.111)

iff there exists a function q ∈ H1(B) such that

u = grad q. (1.112)

Moreover, the function q is uniquely determined up to a constant.

Proof: See [GiRa], Theorem 2.9.

BVP 5 (Interior normal problem for harmonic fields) Let ∂B ∈ C0,1. For some

given function g ∈ H−1/2
◦ (∂B)

find u ∈ Hdiv(B) such

{
div u = 0, curlu = 0 in B,
ν · u = g on ∂B.

(1.113)

The boundary condition is to be understood in the sense of γν [B]u = g.

Theorem 1.34 The interior normal problem for harmonic fields (1.113) with boundary

values g ∈ H−1/2
◦ (∂B) has one and only one solution u ∈ Hdiv(B).

Proof: Let q ∈ H1
4(B) be a solution of the interior Neumann problem (1.105) with

boundary condition ∂νq = g, then u = grad q solves the problem (1.113) and existence is
proven. For uniqueness, let u be a solution of the corresponding homogeneous problem.
Then, there exists a function q ∈ H1(B) such that u = grad q. Consequently, the function
q satisfies 4q = 0, ∂νq = 0. Green’s first identity yields∫

B

|u|2 dx =

∫
B

| grad q|2 dx =

∫
∂B

q∂νq ds = 0

from where u = 0 follows.

BVP 6 (Exterior normal problem for harmonic fields) Let ∂B ∈ C0,1. For some

given function g ∈ H− 1
2 (∂B)

find u such

{
div u = 0, curlu = 0 in Be,
ν · u = g on ∂B.

(1.114)

The boundary condition is to be understood in the sense of γν [B
e]u = g.
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The existence and uniqueness of a solution can be proven by reducing the problem to the
exterior Neumann problem for Laplace’s equation (1.108) by the scalar potential q with
u = grad q as done in the proof of Theorem 1.34. We set

Z := gradW 1(Be) =

{
grad q ∈ L2(Be) | q√

1 + |x|2
∈ L2(Be)

}
. (1.115)

Theorem 1.35 The exterior normal problem for harmonic fields (1.114) has one and
only one solution u ∈ Z.

Remark 1.36 In general, for a strong harmonic field u, we have the behavior at infinity

u(x) = u∞ + O (|x|−2), (1.116)

∂αu

∂xα
= O (|x|−|α|−1), |α| ≥ 1 (1.117)

with a constant vector u∞ (see Theorem 3.1 of [Ma]). Therefore, it is sufficient to require
a decay u(x) → 0, |x| → ∞ for classical solutions of the problem (1.114). In this case, due
to the behavior of strong harmonic functions (1.109), there exists just one scalar potential
q of u vanishing at infinity, and this function q has the stronger decay q(x) = O (|x|−1).
In a view of the definition of Z we get u = grad q ∈ Z.

1.4.3 Boundary and Volume Potentials

Now we are prepared to introduce some notations and operators which are well known
from potential theory. We start with the single and double layer potentials

(Sφ)(x) :=

∫
∂B

Φ(x, y)φ(y) ds(y), x ∈ R3, (1.118)

(Dφ)(x) :=

∫
∂B

∂Φ(x, y)

∂ν(y)
φ(y) ds(y), x ∈ R3 \ ∂B. (1.119)

Analogously, ~S is the vectorial single layer potential in three dimensions.

Theorem 1.37 Let s ∈ [−1
2
, 1

2
]. The operator S and ~S are linear bounded mappings

S : Hs− 1
2 (∂B) → Hs+1(BR), (1.120)

~S : Hs− 1
2 (∂B) → Hs+1(BR), (1.121)

where BR is a ball with sufficiently large radius R. The double layer potential D is a linear
bounded mapping

D : Hs+ 1
2 (∂B) → Hs+1(B), Hs+ 1

2 (∂B) → Hs+1(Be). (1.122)
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Proof: We refer to Theorem 6.12 of [McL] for the intervall (1
2
, 1

2
). For the whole interval

see [McL], page 209 and the literature cited there.

Remark 1.38 Of course, if ∂B is smoother, then we get more regularity. Provided ∂B ∈
Ck+1,1, k ∈ N0, the results of Theorem 1.37 can be extended for s ∈ (1

2
, k + 1] with the

modification

S : Hs− 1
2 (∂B) → Hs+1(B), Hs− 1

2 (∂B) → Hs+1(Be ∩BR), (1.123)

~S : Hs− 1
2 (∂B) → Hs+1(B), Hs− 1

2 (∂B) → Hs+1(Be) (1.124)

(see Corollary 6.14 of [McL]).

We state the mapping properties of the evaluations of S and D on ∂B in the following
theorem and add the mapping property of ∂ν applied to S and D, respectively. Here, ∂νS
is declared as

((∂νS)φ)(x) =

∫
∂B

∂Φ(x, y)

∂ν(x)
φ(y) ds, x ∈ ∂B, (1.125)

where the unit normal vector ν is almost everywhere defined. In the same way we declare
∂νD. We should explicitly make a difference between γ0[B], γ0, γ0[B

e] and ∂ν [B], ∂ν , ∂ν [B
e],

respectively, because they may lead to different results.

Theorem 1.39 For the simply-connected domain B with Lipschitz continuous boundary
∂B and s ∈ [−1

2
, 1

2
] holds

S : Hs− 1
2 (∂B) → Hs+ 1

2 (∂B), (1.126)

D : Hs+ 1
2 (∂B) → Hs+ 1

2 (∂B), (1.127)

∂νS : Hs− 1
2 (∂B) → Hs− 1

2 (∂B), (1.128)

∂νD : Hs+ 1
2 (∂B) → Hs− 1

2 (∂B). (1.129)

Proof: See Theorem 1 of [Co].

For every density φ ∈ H− 1
2 (∂B) we have Sφ ∈ W 1(R3). Further, the function Sφ

is analytic and harmonic in B and in Be. The kernel Φ(x, y) is analytic for y ∈ ∂B
and x /∈ ∂B. We may interchange differentation and integration and obtain an analytic
function. With the aid of 4xΦ(x, y) = 0 we conclude that Sφ is a harmonic function in
B and in Be. In the same way we can show that Dψ is a harmonic function in B,Be for
each density ψ ∈ H 1

2 (∂B). This property makes the single and double layer potential to
excellent tools to solve boundary value problems for Laplace’s equation.

We will show that the Biot-Savart operator can be represented as curl of the volume
potential

(Vf)(x) :=

∫
B

Φ(x, y)f(y)dy, x ∈ R3. (1.130)
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Thus, we study the mapping properties of V .

Theorem 1.40 Given two bounded domains D and G, the volume potential V : L2(D) 7→
H2(G) is a linear bounded operator.

Proof: For the statement we refer to Theorem 8.2 in [CK1]. In this theorem, the more
general case of Helmholtz’ equation is considered.

At this stage we can show continuity of Vf in a very easy way. For z ∈ Be and x→ z we
are able to estimate |(V)f(x)− (Vf)(z)| against C‖f‖L1(B)|x−z| with a constant C ∈ R+

depending on dist(x,B). Thus, we have continuity in Be. An application of Theorem 1.40
to the Lipschitz domains B and G with B ⊂ G yields Vf ∈ H2(G). From the Sobolev
imbedding Theorem 1.9 we obtain H2(G) ⊂ C0(G), i.e. Vf is continuous in G. Together
with B ⊂ G we have continuity in R3. Moreover, the integral kernel Φ(x, y) is analytic
for x ∈ Be and y ∈ B. By interchanging differentiation and integration we derive the
analyticity of Vf in Be. Now, we are able to formulate

Theorem 1.41 The volume potential V with density f ∈ L2(B) is continuous in R3 and
analytic in Be.

Theorem 1.42 For the volume potential V with density f ∈ L2(B) the equations

4Vf = 0 in Be, (1.131)

4Vf = −f in B (1.132)

are satisfied.

Proof: Equation (1.131) can be shown by using the analyticity of the integral kernel
together with 4Φ(x, y) = 0 for x ∈ Be, y ∈ B. For the statement (1.132) we refer to
[Jost], Satz 9.1.1.

Now, we are in a position to extend Green’s representation formula

u(x) =

∫
∂B

Φ(x, y)
∂u(y)

∂ν
− u(y)

∂Φ(x, y)

∂ν(y)
ds(y)−

∫
B

Φ(x, y)4u dy, x ∈ B

to functions u ∈ H1
4(B). We rewrite it as a sum of single layer, double layer, and volume

potentials
u = S(∂νu)−D(γ0u)− V(4u). (1.133)

The terms are well defined and bounded for u ∈ H1
4(B) because ∂ν [B]u ∈ H− 1

2 (B),

γ0[B]u ∈ H
1
2 (B), and 4u ∈ L2(B). Finally, Green’s representation formula (1.95) holds

for u ∈ H1
4(B) by a dense approximation argument from Theorem 1.11. Applying this

formula to harmonic functions which are weak in L2-sense, we obtain a representation

u = S(∂νu)−D(γ0u). (1.134)



1.4 Potential Theory 33

As argued above, the single and double layer potential are analytic and strong harmonic
functions inside B, and thus, u is a strong harmonic function. Summarizing we state:
weak harmonic functions are strong harmonic functions and strong harmonic functions
are analytic functions.

We complete the analysis of the scalar boundary integrals by giving a short outline of
the injectivity of S,D. Let u ≡ 1 in B, then ∂ν [B]u = 0. We apply Green’s representation
of harmonic functions (1.134) to conclude 1 = −D1 in B. For any x ∈ Be, the function
Φ(x, .) is harmonic in B. We apply Green’s first identity (1.93) to the functions u ≡ 1
and v = Φ(x, .) and obtain 0 = D1 for x ∈ Be. Together we have shown

D1 =

{
−1, x ∈ B,
0, x ∈ Be.

(1.135)

Therefore, D can not be continuous across ∂B. Moreover, Dφ = 0 in Be does not imply
that φ vanishes. For the single layer potential we state.

Theorem 1.43 If φ ∈ H− 1
2 (∂B) satisfy Sφ = 0 on ∂B, then φ = 0.

Proof: A proof can be found in [McL], Theorem 8.11.

For our vector analysis we need to introduce the three dimensional analogon ~V of
the volume potential V . In this text, we focus on volume potentials with divergence-free
fields. Such volume potentials are not divergence-free in general as we will see in the next
theorem.

Theorem 1.44 Let BR be a ball with sufficiently large radius R and j ∈ Hdiv(B). Then

we have div (~Vj) ∈ H1(BR) and

div (~Vj) = −S(ν · j) + V( div j). (1.136)

Further, the relation (1.136) holds pointwise in Be.

Proof: From Theorem 1.40 we get ~Vj ∈ H2(BR) and div (~Vj) ∈ H1(BR). Let j ∈
C∞(B), then we calculate

div (~Vj)(x) =

∫
B

div x{Φ(x, y)j(y)} dy = −
∫
B

grad yΦ(x, y)j(y) dy

= −
∫
B

div y(Φ(x, y)j(y)) dy +

∫
B

Φ(x, y) div j(y)) dy

= −(S(ν · j))(x) + (V( div j))(x) (1.137)

for x ∈ BR. Both sides are well defined and linear bounded operators Hdiv(B) → H1(BR).
Hence, the statement (1.136) holds for j ∈ Hdiv(B) by the dense approximation technique
together with denseness of C∞(B) in Hdiv(B) (see Theorem 1.12).
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For the exterior of B, we know that ~Vj is analytic accordant to Theorem 1.41. Hence,
the calculation (1.137) holds for j ∈ Hdiv(B) and x ∈ Be.

As a consequence, the volume potential with density j ∈ Hdiv=0(B) is divergence-free
provided ν · j = 0.

1.4.4 The Helmholtz Decomposition

For every curl-free field u there exists a function q called scalar potential with u = grad q.
Analogously, for every divergence-free field w there exists a field v called vector potential
that satisfies curlv = w. The vector potential w of v is not uniquely determined, we
may add a constant vector. It is also a well known fact that we are able to choose a
divergence-free field v among the vector potentials. The following theorem states that
every divergence-free field has a divergence-free vector potential with vanishing normal
component.

Theorem 1.45 Let w ∈ Hdiv=0(B). There exists one and only one divergence-free vector
potential u ∈ Hcurl(B) of w with ν · u = 0. If ∂B is of class C1,1, then u ∈ H1(B).

Proof: The proof can be found in [GiRa], Theorem 3.5.

For the classical magnetostatic problem (1.4) the magnetic field H is a divergence-free
vector potential of the current distribution j. In the sequel we also consider vector po-
tentials different from those defined by Theorem 1.45. As a further example, consider a
current distribution with free divergence and harmonic components, then there exists a
vector potential in the form of a vectorial single layer potential ~Sa with a density a (see
Subsection 2.2.3).

The next theorem gives another characterization of the vector potential defined by
Theorem 1.45 if we further assume that the normal component vanishes.

Theorem 1.46 Let w ∈ Hdiv=0(B) with ν · w = 0. There exists one and only one
divergence-free vector potential v of w with ν × v = 0. This vector potential can be
characterized as the unique solution to the boundary value problem

v ∈ Hcurl(B) :


−4v = curlw in H−1(B),
div v = 0 in B,
ν × v = 0 on ∂B.

(1.138)

Moreover, if ∂B is of class C1,1(B) or a convex polyhedron, then v belongs to H1(B).

Proof: We refer to Theorem 3.6 of [GiRa].

Remark 1.47 It can be shown that for a field w ∈ H0,div(B) with div w = 0 the char-
acterizations from Theorems 1.45 and 1.46 lead to the same vector potential (see proof of
Theorem 3.6 of [GiRa]).
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An interesting application of Theorem 1.46 is the decomposition of vector fields also called
Helmholtz’ decomposition in the literature. It expresses that every field w ∈ L2(B) may
be written as a sum of a gradient and a curl field, i.e. there exist q ∈ H1(B) and v ∈ H1(B)
such that w = grad q + curlv. For the moment, assume that the existence is proven.
Then w− grad q is a divergence-free field of Hdiv(B) and ν · (w− grad q) is well defined.
Now, there exists a vector potential for w− gradφ. If we require ν · (w− grad q) = 0 in

H− 1
2 (∂B) we may choose the vector potential defined by (1.138) which has the property

ν · curlv = ν · (w − grad q) = 0. The following version from [GiRa] puts the condition
ν · (w − grad q) = 0 in other terms.

Theorem 1.48 (Helmholtz’ decomposition) For each vector field w ∈ L2(B), there
exists a function q ∈ H1(B) and a function v ∈ H1(B) such that

w = grad q + curlv (1.139)

with v being the only solution of (1.138) and q ∈ H1(B) being a solution of∫
B

( grad q − v) · gradφ dx = 0 ∀φ ∈ H1(B). (1.140)

Moreover, the functions curlv and grad q are orthogonal in L2(B).

Proof: The theorem and its proof can be found in [GiRa], Corollary 3.4.
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Chapter 2

Magnetic Tomography via the
Biot-Savart Operator

The main ingredient of magnetic tomography is the Biot-Savart operator

(Wj)(x) =
1

4π

∫
B

j(y)× x− y

|x− y|3
dy =

∫
B

grad xΦ(x, y)× j(y) dy, (2.1)

which maps a current distribution j onto its magnetic field H. The basic task to re-
construct a current density j from its magnetic field H leads to the investigation of the
mapping properties of the operator W . In the introduction, we have developed six ques-
tions as core problems of this investigation.

1. Given some magnetic field, is it possible to uniquely reconstruct the original current
distribution j which generated H, i.e. is W injective or does W have a non-trivial
nullspace N(W)?

2. If N(W) is non-trivial, can the space be explicitly characterized, i.e. is it possible
to describe N(W) without using the operator W? In general terms we ask: which
functions do not generate a magnetic field in the exterior Be?

3. Is the reconstruction of j from H stable? How can we stabilize the calculation of j?

4. Can we explicitly characterize the orthogonal space N(W)⊥? In general terms this
question reads: which functions (or equivalence classes of functions) do generate a
magnetic field outside?

5. What is the relation of ohmic currents to the nullspace N(W) and its orthogonal
space N(W)⊥?

6. How much data do we need to measure on ∂G to uniquely determine the magnetic
field H in the exterior Be?

The task of this chapter is to provide detailed answers to each question.
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In the first section of this chapter we establish some mapping properties of the Biot-
Savart operator. For instance we show that the Biot-Savart operator does not satisfy the
Maxwell equation in general.

Questions 1., 2. and 4. are investigated in Section 2.2. It is shown that the nullspace
N(W) is non-trivial, and then characterizations of the spaces N(W) and N(W)⊥ are de-
veloped. The space N(W ) contains all current densities which do not generate a magnetic
field in the exterior Be of the domain B. The set N(W )⊥ describes the set of equivalence
classes

j +N(W), j ∈ N(W)⊥ (2.2)

which do produce the same magnetic field in the exterior Be.
The space N(W)⊥ is of great interest for the reconstructability of the currents from

its exterior magnetic field H. As an integral operator with analytic kernel the Biot-Savart
operator W is not continuously invertible, i.e. the inversion is unstable. This answers
the first part of question 3. We use the Tikhonov regularization scheme to stabilize
the inversion of the equation Wj = H. It is well known that the classical Tikhonov
regularization

jα := (αI +W∗W)−1W∗H (2.3)

in the limit α → 0 for exact data reconstructs a projection of j onto N(W)⊥. Thus, the
characterization of N(W)⊥ provides a basis to investigate best-possible reconstructions
for some given current j as an appropriate projection into the equivalence class j+N(W).

Question 5 is investigated in Section 2.3. We first formulate and solve an anisotropic
conductivity problem which is used to model ’realistic’ currents. Indicating this particular
model based on Ohm’s law, we call these currents ohmic currents. Then, we show that
these ohmic currents are orthogonal to the nullspace N(W) with respect to the scalar
product (1.14).

As a major part of this work we present a numerical study on the stabilized inversion
of the Biot-Savart operator in Subsection 2.3.3. First, we use the finite integration tech-
nique to simulate ohmic currents in wire grids and fuel cells. Second, we introduce two
methods called difference and absolute reconstruction , and we describe a realization of the
Tikhonov regularization with respect to the free divergence of the current distributions.
Third, we apply the stabilized inversion algorithms to simulated data where we recon-
struct the currents based on a conductivity distribution with defect inclusions. Fourth,
we employ the reconstruction methods to real measurement data from a wire grid, and
fifth, from segmented fuel cells.

Finally, we investigate the amount of data which is necessary for reconstructions, i.e.
we treat question 6. Here, three different settings are investigated. In the first setting
the full three-dimensional magnetic field H is measured on some exterior surface ∂G with
B ⊂ G. Second, we investigate the case where the flux ν · j|∂B is known and show that
the knowledge of the normal components ν ·H|∂G uniquely determines the magnetic field
in Be. Third, we assume that the tangential components ν × H|∂G are known. These
data also uniquely determine H in Be. Further, we show that the tangential components
determine the current flux ν · j|∂B.
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2.1 Vector analysis for the Biot-Savart operator

The Biot-Savart operator has a weakly singular kernel and is a linear compact mapping
W : L2(B) → L2(B) as shown in Theorem A.12 in the appendix.

Theorem 2.1 The operator W with density j ∈ L2(B) may be written as

Wj = curl (~Vj). (2.4)

Proof: It follows by the transformation

(Wj)(x) =

∫
B

grad xΦ(x, y)× j(y) dy =

∫
B

curl x {Φ(x, y)j(y)} dy = curl (~Vj)(x)

for x ∈ R3 and a dense approximation argument.

Let G be a bounded Lipschitz domain with B ⊂ G. Then, the Biot-Savart operator with
weakly singular kernel maps L2(B) compactly into L2(G), and equation (2.4) holds in
L2(G). Moreover, the operator W maps L2(B) continuously into H1(G) which can be

derived as follows. The vector-valued volume potential ~V maps L2(B) into H2(G) since
the scalar-valued volume potential is a mapping V : L2(B) → H2(G) from Theorem 1.40.

Therefore, we have curl ~Vj ∈ H1(G).Hnece, the trace operators γ0[B] and γ0[B
e] applied

to Wj coincide. Since ~Vj is analytic in Be the field Wj = curl ~Vj is also analytic. We
summarize these results in the following theorem.

Theorem 2.2 The operator W is a linear bounded mapping

W : L2(B) → H1(B). (2.5)

Moreover, the operator W is analytic in Be and continuous across ∂B in the sense that

γ0[B]Wj = γ0[B
e]Wj (2.6)

for each j ∈ L2(B).

In preparation for the nullspace decomposition we focus on current distributions j with
weak divergence, then the current flux ν · j is well defined. We introduce the operator

(SOj)(x) := gradS(ν · j)(x) = grad

∫
∂B

Φ(x, y)(ν · j)(y) ds(y) (2.7)

which is well defined for j ∈ Hdiv(B) since γν [B]j ∈ H− 1
2 (∂B) and S is well defined on

H− 1
2 (∂B).
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Theorem 2.3 For the Biot-Savart operator W with density j ∈ Hdiv(B) we have

div (Wj) = 0, curl (Wj) = j− SOj + gradV( div j) in B, (2.8)

div (Wj) = 0, curl (Wj) = −SOj + gradV( div j) in Be. (2.9)

Proof: Looking at the representation Wj = curl ~Vj the divergence statements are clear.
For the curl statements, we will repeat the proof from [KKP], Lemma 8.

Let j ∈ C∞(B). Using curl curl ~Vj = −4~Vj + grad div ~Vj together with div ~Vj =
−S(ν · j) + V( div j), see relation (1.136), we obtain

curlWj = curl curl ~Vj = −4~Vj + grad div ~Vj
(1.136)

= −4~Vj− SO(ν · j) + gradV( div j). (2.10)

For the interior domain B we have 4~Vj = −j and

curlWj = j− SOj + gradV( div j).

Now, the curl statement of (2.8) follows from the denseness of C∞(B) in Hdiv(B). Con-

sidering the equation (2.10) in the exterior domain Be we have 4~Vj = 0 and

curlWj = −SOj + gradV( div j),

which holds for j ∈ Hdiv(B) by denseness of C∞(B) in Hdiv(B).

From these equations we see that the Biot-Savart operator in general does not satisfy the
magnetic Maxwell equations in linear media

curlH = j, div H = 0. (2.11)

It is a solution provided −SOj + gradV( div j) = 0. The additional terms SOj and
gradV( div j) take into account boundary effects and current sources. If we assume that
there are no sources in B, the curl equation of (2.9) reduces to curl (Wj) = −SOj. The
term SOj vanishes if and zero only if ν · j = 0, that is for closed systems (see decay at
infinity and injectivity of S).

The question for a harmonic exterior magnetic field Wj is of practical interest. If Wj
is harmonic (and solves Maxwell’s equations) we are able to calculate Wj from the normal
component ν ·Wj|∂G on the boundary of a domain G with B ⊂ G, i.e. we need to measure
one scalar function. The accordant exterior boundary value problem is investigated in
Theorem 1.35. From a practical point of view, it would decrease the cost of measurements.
In Subsection 2.3.3 we present a study on difference reconstructions where j1, j2 are current
distributions with same current flux in a homogeneous fuel cell and a fuel cell with a defect
inclusion, respectively. Then, by j := j2− j1, the field Wj is harmonic in Be and uniquely
determined by the measurement of ν · Wj|∂G.
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2.2 Decomposition with Respect to the Nullspace

It has already been shown by Kress, Kühn, Potthast [KKP] that the nullspace N(W)
contains the set

M :=
{
j = 4m | m ∈ C2

0(B)
}
, (2.12)

i.e. the nullspace is non-trivial. The proof shows that the set M is included in the nullspace
of operator ~V . Together with W = curl ~V we have M ⊂ N(W). This answers question
1. The goal for this section is to characterize the nullspace N(W) and its orthogonal
complement where W is considered as a mapping

W : Hdiv=0(B) → L2(Be). (2.13)

Here, the behavior at infinity ensures that Wj is square integrable in Be.
Trivially, if j is an element of N(W), then Wj solves Maxwell’s equation in Be. The

following statements show some more consequences.

Theorem 2.4 Let j0 ∈ Hdiv(B) such that Wj0 = 0 in Be, then

S(ν · j0) = V( div j0) (2.14)

is satiesfied in Be. Furthermore, if j0 ∈ Hdiv=0(B) satisfies Wj0 = 0 in Be, then ν · j0 = 0
on ∂B.

Proof: Let j0 ∈ Hdiv(B). The assumption Wj0 = 0 in Be implies curlWj0 = 0.
Inserting this in (2.9) entails

gradV( div j0)− gradS(ν · j0) = −SOj0 + gradV( div j0) = curlWj0 = 0.

Therefore, V( div j0) − S(ν · j0) must be constant. From the behavior of the single layer
potential and volume potential at infinity we conclude S(ν · j0) = V( div j0) in Be. If
furthermore div j0 = 0, then we have S(ν · j0) = 0 in Be and S(ν · j0) = 0 on ∂B. The
injectivity of S from Theorem 1.43 implies ν · j0 = 0 on ∂B.

Corollary 2.5 Let j0 ∈ Hdiv(B) such that Wj0 = 0 in Be, then Maxwell’s equations for
the exterior

div (Wj0) = 0, curl (Wj0) = 0 in Be (2.15)

are satisfied. Furthermore, if j0 ∈ Hdiv=0(B), then we have

div (Wj0) = 0, curl (Wj0) = j0 in B. (2.16)

Proof: Let j ∈ Hdiv(B) satisfy Wj0 = 0 in Be, then (2.9) is obvious. If furthermore
div j0 = 0, then the Theorem 2.4 implies ν · j0 = 0. Moreover, the terms S(ν · j0) and
V( div j0) vanish. In this case equation (2.9) leads to (2.16) and the proof is complete.
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As a further preparation step, we use the Helmholtz decomposition for the current
j and apply the Biot-Savart operator to the gradient term and the curl term of the
decomposition, respectively. Let v ∈ C∞(B), we calculate

W( curlv)(x) = curlV( curlv)(x) = curl
∫
B

Φ(x, y) curlv(y) dy

(A.78)
= curl

∫
B

curl y {Φ(x, y)v(y)} dy − curl
∫
B

grad yΦ(x, y)× v(y) dy

(1.99)
= curl ~S(ν × v)(x) + curl

∫
B

grad xΦ(x, y)× v(y) dy

(2.1)
= curl ~S(ν × v)(x) + curl (Wv)(x), x ∈ R3 (2.17)

where we have used formula (A.78), Stokes’ theorem (1.99) and the representation of W
(2.1). This equation can be extended by dense approximation to fields v ∈ Hcurl(B). For
q ∈ C∞(B) we derive

W( grad q)(x) =
∫
B

grad xΦ(x, y)× grad q dy = −
∫
B

grad yΦ(x, y)× grad q dy

(A.78)
= −

∫
B

curl y {Φ(x, y) grad q} dy

(1.99)
= − ~S(ν × grad q), (2.18)

which holds for q ∈ H1(B) by a dense approximation argument again. Now, we put
both results together. Let j = grad q + curlv be a Helmholtz decomposition with v ∈
H1(B), div v = 0, ν × v = 0 and q ∈ H1(B), ∂νq = ν · j. Applying the calculations above
to the exterior Be of B we derive

Wj = W( grad q + curlv) = W( grad q) +W( curlv)
(2.18),(2.17)

= − ~S(ν × grad q) + curlS(ν × v) + curlWv
(2.9)
= − ~S(ν × grad q)− SOv. (2.19)

2.2.1 A characterization of N(W )

We are now prepared to answer question 3, i.e. we characterize the nullspace N(W).

Lemma 2.6 For every j0 ∈ N(W) exists a field v ∈ H1
0(B), div v = 0 that satisfies

curlv = j0.

Proof: The field v := Wj0 fulfills the conditions v ∈ H1(B), γ0[B]v = γ0[B
e]v =

0, div v = 0, curlv = j0.

The question arises if all divergence-free fields v with vanishing trace γ0[B]v produce a
field curlv such that W( curlv) vanishes outside B. To verify this, we use the equation
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(2.19) for the field curlv with div v = 0, γ0[B]v = 0 to conclude

W( curlv) = 0 in Be. (2.20)

To simplify notations we introduce the space

X :=
{

curlv | v ∈ H1
0(B) : div v = 0

}
.

Altogether, we have proven the following theorem.

Theorem 2.7 The nullspace N(W) is given by the space X, i.e.

N(W) = X. (2.21)

As the nullspace of the linear continuous operator W the space X is a closed subspace
of Hdiv=0(B) and therefore complete. Moreover, X is a Hilbert space equipped with the
L2-scalar product.

2.2.2 A characterization of N(W)⊥

We have the decomposition

Hdiv=0(B) = N(W)⊕N(W)⊥, (2.22)

where the orthogonality is related to the scalar product of Hdiv=0(B) which is in fact the
L2-scalar product. It means

N(W)⊥ :=
{
j ∈ Hdiv=0(B) | 〈j, j0〉L2(B) = 0 ∀j0 ∈ N(W)

}
.

We search for a characterization of N(W)⊥ without using the operator W . At first, we
convince ourself that harmonic fields are elements of N(W)⊥.

Theorem 2.8 Harmonic vector fields are elements of the space N(W)⊥, i.e.

{j ∈ Hdiv=0(B) | curl j = 0} ⊂ N(W)⊥. (2.23)

Proof: Let j ∈ Hdiv=0(B) satisfy curl j = 0. For each j0 ∈ N(W) we have (Wj0)|∂B = 0.
With the aid of formula (A.77) and equation (2.16) we obtain

〈j, j0〉L2(B) =
∫
B

j · j0 dx

(2.16)
=

∫
B

j · curl (Wj0)− (Wj0) · curl j dx

(A.77)
=

∫
∂B

j · (ν ×Wj0) ds = 0, (2.24)
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i.e. j ⊥ j0.

The reverse inclusion of Theorem 2.8 is not true. We will show that fields with harmonic
components are contained in the space N(W)⊥. For this purpose we quote a lemma from
[GiRa] which is a special consequence of the theorem proved by De Rham in [dRh]: if a
distribution vector field u satisfies 〈u,v〉L2(B) = 0 for all divergence-free fields of B then
u = gradφ for a distribution φ.

Lemma 2.9 If f ∈ H−1(B) satisfies∫
B

f · v dx = 0, ∀v ∈ H1
0(B) with div v = 0, (2.25)

then there exists a q ∈ L2(B) such that

f = grad q. (2.26)

Proof: The lemma is taken from [GiRa], Lemma 2.1.

We introduce the space

Y :=
{
j ∈ Hdiv=0(B) | ∃q ∈ L2(B) : curl j = grad q

}
(2.27)

where curl j = grad q holds as equation in H−1(B), i.e. in the sense of∫
B

j · curlv dx =

∫
B

q div v dx, ∀v ∈ H1
0(B). (2.28)

Theorem 2.10 The space N(W)⊥ is given by the space Y, i.e.

N(W)⊥ = Y. (2.29)

Proof: Before we show the inclusions N(W)⊥ ⊂ Y and Y ⊂ N(W)⊥ we provide a basic
formula. Consider the formula of partial differentiation div (j × v) = v curl j − j curlv
which implies ∫

B

v · curl j dx =

∫
B

j · curlv dx (2.30)

for j ∈ C∞(B),v ∈ C∞
0 (B). This equation can be extended to j ∈ Hdiv(B) and v ∈ H1

0(B)
since C∞(B) is dense in Hdiv(B) and C∞

0 (B) is dense in H1
0(B). In this case, the left side

holds in the sence of dual system 〈H1
0(B),H−1(B)〉.

We start with the proof of the inclusion N(W)⊥ ⊂ Y. Let j ∈ N(W)⊥, then the
characterization of the nullspace N(W) from Theorem 2.7 implies 〈j, curlv〉L2(B) = 0 for
each v ∈ H1

0(B), div v = 0. We use the formula (2.30) to verify∫
B

v · curl j dx
(2.30)
=

∫
B

j · curlv dx = 0 ∀v ∈ H1
0(B) with div v = 0
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in the sense of the dual system 〈H1
0(B),H−1(B)〉. Now, we apply Lemma 2.9 to conclude

that there exists a q ∈ L2(B) with curl j = grad q and the first part of the proof is
complete.

The second part is the proof of inclusion Y ⊂ N(W)⊥. Let j0 ∈ N(W), then there
exists a field v ∈ H1

0(B), div v = 0 with curlv = j0. With the aid of Gauss’ divergence
theorem (1.92) we obtain∫

B

v · grad q dx
(1.92)
=

∫
∂B

q ν · v dx−
∫
B

q div v dx = 0 (2.31)

for q ∈ C∞(B). Since C∞(B) is a dense subset of L2(B) this equation holds for q ∈ L2(B)
in the sense of the dual system 〈H1

0(B),H−1(B)〉. Finally, let j ∈ Y, then there exists a
function q ∈ L2(B) with curl j = grad q for a q ∈ L2(B). Putting the results (2.31) and
(2.30) together we derive

〈j, j0〉L2(B) =

∫
B

j · curlv dx
(2.30)
=

∫
B

v · curl j dx =

∫
B

v · grad q dx
(2.31)
= 0. (2.32)

This shows j ⊥ j0 and Y ⊂ N(W)⊥.

2.2.3 More properties of N(W )⊥

We want to have a closer look at the elements of the space N(W)⊥. From curl j = grad q
we have

4j = grad div j− curl curl j = curl grad q = 0 (2.33)

for j ∈ N(W)⊥, which holds as equation in H−2(B). It means that the elements of the
space N(W)⊥ have components satisfying the Laplace equation in H−2 sence. Under
further regularity assumptions, this elements are uniquely determined by the tangential
component ν × j|∂B. In this subsection, we investigate the corresponding boundary value
problem for the equation 4j = 0, div j = 0. Additionally, in preparation of the boundary
value problems in Section 3.1, we make ourself familiar with the special boundary value
type and the solution methods.

We assume that the boundary ∂B is of class C2. We give a briefly introduction of the
surfacic operators GRAD , DIV , CURL called the surface gradient, surface divergence,
and the scalar surface rotational of a vector field on ∂B. A detailed introduction can
be found in [Ned], Section 2.5.6. We follow [CK1], page 167 and assume a parametric
representation

x(t) = (x1(t1, t2), x2(t1, t2), x3(t1, t2)) (2.34)

of a surface patch of ∂B. In this local coordinates the surface gradient is defined by

GRAD f :=
2∑

i,j=1

gij ∂f

∂ti

∂f

∂tj
(2.35)
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where gij is the inverse of the first fundamental matrix

gij =
∂x

∂ti
· ∂x
∂tj

, i, j = 1, 2 (2.36)

of differential geometry. For a continuous differentiable function in a neighborhood of ∂B
we have the relation

grad f = GRAD f +
∂f

∂ν
ν. (2.37)

For a continuously differentiable tangential field a with the represenation

a = a1
∂x

∂t1
+ a2

∂x

∂t2
(2.38)

we define the surface divergence by

DIV a :=
1
√
g

{
∂

∂t1
(
√
ga1) +

∂

∂t1
(
√
ga1)

}
(2.39)

where g denotes the determinant of the matrix gij. Now, from the definitions (2.35) and
(2.39) we conclude the product rule

DIV (fa) = a · GRAD f + f DIV a. (2.40)

With the aid of ∫
∂B

DIV b ds = 0 (2.41)

for each tangential field b (see for instance [Ma], page 74), we obtain∫
∂B

f DIV a ds = −
∫
∂B

a · GRAD f ds. (2.42)

which we use for the following definition.

Definition 2.11 A tangential field a has weak divergence if there exists an integrable
scalar denoted by DIV a such that (2.42) is satisfied for all f ∈ C1(∂B).

The definition (2.35) holds for a function f ∈ Hs(∂B) where the partial differentials
∂f/∂ti, i = 1, 2 have to be understood as weak partial differentials on the C2 boundary
∂B. This way we have introduced the weak surface gradient. Next, we define the weak
scalar rotational CURL a of a tangential field a by

CURL a := −DIV (ν × a). (2.43)
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Let L2
t (∂B) be the space of all square-integrable tangential fields and Hs

t(∂B) the
space of all tangential Hs-fields on ∂B. Then we introduce

Hs
t, CURL (∂B) := {a ∈ Hs

t(∂B) | CURL a ∈ Hs
t(∂B)} , (2.44)

Hs
t, CURL=0(∂B) :=

{
a ∈ Hs

t, CURL (∂B) | CURL a = 0
}
, (2.45)

Hs
t, DIV (∂B) := {a ∈ Hs

t(∂B) | DIV a ∈ Hs(∂B)} , (2.46)

Hs
t, DIV =0(∂B) :=

{
a ∈ Hs

t, DIV (∂B) | DIV a = 0
}
. (2.47)

The following relations between the surface operators with a field v ∈ Hcurl(B) and a
tangential field a ∈ Hs

t, CURL (∂B) hold

CURL GRAD a = 0,

γνw = CURL γTv for w := curlv,

see for instance [Ned], Theorem 2.5.19. and [CK1], relation (6.38).

Theorem 2.12 Let ∂B ∈ C2. The trace operator γT is a linear bounded and surjec-
tive operator from Hcurl(B) onto H

−1/2
t, CURL (∂B). For every a ∈ H

−1/2
t, CURL (∂B) exists a

divergence-free field v ∈ Hcurl(B) with γTv = a.
The trace operator γ× is a linear bounded and surjective operator from Hcurl(B) onto

H
−1/2
t, DIV (∂B). For every a ∈ H

−1/2
t, DIV (∂B) exists a divergence-free field v ∈ Hcurl(B) with

γ×v = a.

Proof: See Theorem 5.4.2. in [Ned].

We define the so called Laplace-Beltrami operator acting on tangential fields by

4∂Ba := DIV GRAD a (2.48)

which is an isomorphism of H
1/2
◦ (∂B) onto H

−3/2
◦ (∂B) (see for instance [Ned], page 216

in Section 5.4.1) for the conncected C2 boundary ∂B.

After this brief excursus on surface operators we turn back to the characterization of
the elements of N(W)⊥. The harmonic vector fields are contained in N(W)⊥ and can be
uniquely determined by its tangential component, i.e. we consider the

BVP 7 (Interior tangential problem for harmonic fields) Let ∂B ∈ C2. For some

given field g ∈ H
−1/2
t, DIV (∂B)

find j ∈ Hcurl(B) ∩Hdiv(B) such

{
curl j = 0, div j = 0 in B,
ν × j = g on ∂B.

(2.49)

The boundary condition holds as γ×[B]j = g.
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Theorem 2.13 The boundary value problem (2.49) admits an uniquely determined solu-
tion j ∈ Hcurl(B) ∩Hdiv(B), provided

DIV g = 0. (2.50)

Proof: Let q be the scalar potential of j, then the solvability condition follows from

DIV g = DIV (ν × grad q) = −CURL GRAD q|∂B = 0. (2.51)

At first we prove uniqueness. Let j ∈ Hcurl(B)∩Hdiv(B) be a solution of the corresponding
homogeneous problem and q ∈ H1(B) its scalar potential. The homogeneous boundary
condition implies ν × GRAD q|∂B = 0 and consequently GRAD q|∂B = 0. Therefore, the
function q|∂B must be constant. Now, by div u = 4q, the function q solves the interior
Dirichlet problem of Laplace’s equation

find q ∈ H1(B) such

{
4q = 0 in B,
q|∂B = f on ∂B

(2.52)

with constant boundary values. Its unique solvability implies that q is constant in B.
Finally, we have j = grad q = 0.

For the existence of a solution we reduce the problem (2.49) to the interior Dirichlet

problem of Laplace equation (2.52) with boundary values f ∈ H
1/2
◦ (∂B) determined by

4∂Bf = CURLg. We show that a solution of problem (2.52) induces a solution of (2.49)
by j = grad q. The function CURLg ∈ H−3/2(∂B) fulfills

〈CURLg, 1〉 =

∫
∂B

DIV (ν × g) ds = 0. (2.53)

The isomorphism property of the Laplace-Beltrami operator implies that the equation
4∂Bf = CURLg has an unique solution f ∈ H

1/2
◦ (∂B). Now, we use the unique solv-

ability of problem (2.52) shown in Theorem 1.28. Let q ∈ H1
4(B) be the unique solution

of (2.52), then grad q solves the problem (2.49) which can be shown as follows. The equa-
tions div grad q = 0 and curl grad q = 0 are easy to check, so we prove the boundary
condition by

DIV (ν × GRAD f − g) = −CURL GRAD f − DIV g = 0, (2.54)

CURL (ν × GRAD f − g) = DIV GRAD f − CURLg = 0. (2.55)

Since ∂B is a connected boundary, there exists a surface function g with GRAD g =
ν × GRAD f − g. Equation (2.54) implies 4∂Bg = 0. Hence, g must be constant and
ν × GRAD f − g = GRAD g = 0. Finally, we have ν × grad q = ν × GRAD f = g.

Remark 2.14 The prove of the Theorem 2.13 constructs a solution j = grad q where q
is the solution of 4q = 0, q|∂B = f and f ∈ H

1/2
◦ (∂B) the solution of 4∂Bf = CURLg.

Then we obtain that q ∈ H1
4(B) is a weak harmonic function, and thus, analytic. Alto-

gether, the unique solution j has more regularity: it is analytic in B.
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In general, if an element of N(W )⊥ has a tangential component g ∈ H
−1/2
t, DIV (∂B), it

can be characterized as the solution of the boundary value problem

BVP 8 (Interior tangential problem for the reduced Stokes equation) Let

∂B ∈ C2. For some given function g ∈ H
−1/2
t, DIV (∂B)

find j ∈ Hcurl(B) ∩Hdiv(B) such

{
curl curl j = 0, div j = 0 in B,
ν × j = g on ∂B.

(2.56)

The boundary condition holds in the sence of γ×[B]j = g.

Theorem 2.15 The boundary value problem (2.56) admits an uniquely determined solu-
tion j ∈ Hcurl(B) ∩Hdiv(B).

Proof: For the proof of uniqueness let j be a solution of the corresponding homogeneous
problem, then ν × j = 0 and γTj = 0 ∈ H

−1/2
t, DIV (B). Since the space{

v | v ∈ Hcurl(B) ; v ∈ Hdiv(B) ; γTv ∈ H
−1/2
t, DIV (B)

}
(2.57)

is included in H1(B) (see Theorem 5.4.3 in [Ned]), the field j belongs to H1(B). From
the calculation∫

B

| curl j|2 dx =

∫
B

−j curl curl j + curl j curl j dx

=

∫
B

div {j× curl j} dx =

∫
∂B

curl j · ν × j dx = 0

we conclude that curl j vanishes. Now, j solves the problem (2.49) with homogeneous
boundary condition. The unique solveability implies j = 0.

Due to Theorem 2.12, there exists a v ∈ Hcurl(B), div v = 0 with ν × v = g. Now,

we have ν · curlv ∈ H− 1
2 (∂B) and 〈ν · curlv, 1〉 = 0. The interior Neumann problem for

Laplace equation {
4p = 0 in B,
∂νp = ν · curlv on ∂B

(2.58)

admits a solution p uniquely determined up to a constant, see Theorem 1.29. We observe
that the field curlv− grad p has free divergence and vanishing normal component. From
Theorem 1.46, there exists an unique determined vector potential w of the field curlv−
grad p with div w = 0 and ν ×w = 0. Finally, we verify

curl curl (v −w) = curl ( curlv − grad p− curlw) = 0, (2.59)

div (v −w) = 0, (2.60)

ν × (v −w) = ν × v = g, (2.61)
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i.e. j := v −w is a solution of problem (2.56).

For an integral representation of the solution of problem (2.56) with boundary values
g ∈ L2

t, DIV (B) we summarize the results of Section A.4. The field

j = curl ~Sa (2.62)

with density a ∈ L2
t, DIV (B) as the unique solution of (I−M)a = −2g solves the problem

(2.56). Moreover, if DIV g = 0 then this solution is curl-free, i.e. the field j = curl ~Sa
with a = (I −M)−1g is a solution of problem (2.49).

2.3 Magnetic Tomography for Ohmic Conductors

The results of the last section are true for all currents independent of their physical
nature. The decomposition with respect to the nullspace is valid for currents (and their
magnetic fields) in the corona of the sun as well as for currents in ohmic conductors. For
our applications, as described in the introduction, we modell current distributions to be
based on a conductivity distribution. This leads to a reconstruction problem where we
measure the magnetic field of a current distribution of an ohmic conductor.

Let B be the domain with a conductivity distribution and g the current flux into
B. In the following Subsection 2.3.1 we show that under appropriate assumptions the
current distribution j is uniquely determined via an anisotropic impedance problem. In
Subsection 2.3.2 we will develop some orthogonality relations for these ohmic currents
which provides at least a partial answer to question 5.

2.3.1 The Anisotropic Impedance Problem

We consider a conductivity distribution σ in B. Generally, it is a matrix of the form

σ(x) =

 σ11(x) σ12(x) σ13(x)
σ21(x) σ22(x) σ23(x)
σ31(x) σ32(x) σ33(x)

 , x ∈ B.

We assume that σ is strict coercive, i.e. there exists a constant c > 0 such that

a · σa ≥ c|a|2, ∀a ∈ R3. (2.63)

As a consequence, σ is invertible with bounded inverse σ−1. Further, we restrict the
analysis to symmetric conductivities, so we define the set of symmetric and strict coercive
matrix functions by

Σ :=

σ =

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 | σ is strict coercive in B

 . (2.64)
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For a σ ∈ Σ and g ∈ H− 1
2

◦ (∂B) the current distribution fulfills the conditions

curlσ−1j = 0, div j = 0 in B, (2.65)

ν · j = g on ∂B, (2.66)

which follow from Maxwell’s equations curlE = 0, curlH = j and Ohm’s law j = σE.
Since B is simply-connected, there is an electric potential φe such that E = gradφe. Now,
we are able to formulate:

BVP 9 (Interior Neumann problem for the impedance equation) Let ∂B ∈ C0,1.

For some given σ ∈ Σ and g ∈ H− 1
2

◦ (∂B)

find φe ∈ H1
◦ (B) such

∫
B

gradψ · σ gradφe dx =

∫
∂B

ψ g ds, ∀ψ ∈ H1(B). (2.67)

Theorem 2.16 The interior Neumann problem for the impedance equation (2.67) has an
unique solution φe ∈ H1

◦ (B).

Proof: See [KüPo], Theorem 1.

Let φe be a solution of (2.67), then j := σ gradφe satisfies div j = 0, ν · j = g in a weak
sense, i.e. ∫

B

j · gradψ ds =

∫
∂B

ψg ds, ∀ψ ∈ H1(B). (2.68)

On the other hand, if j is a solution of (2.65), then there exists a scalar potential φ ∈ H1(B)
such that gradφ = σ−1j. The assumption implies div (σ gradφ) = 0, ν · (σ gradφ) = g.
Integrating the first equation over ∂B, using the second equation and Gauss’ divergence
theorem yield that φ is a solution of (2.67).

The left hand side of (2.67) is a scalar product on L2(B). Hence, we define

〈E1,E2〉σ :=

∫
B

E1 · σE2 dx (2.69)

and

〈j1, j2〉σ−1 :=

∫
B

j1 · σ−1j2 dx, (2.70)

respectively. We note that the first scalar product generates the so called energy norm
‖.‖σ by

‖E‖2
σ =

∫
B

E · σE dx =

∫
B

E · j dx. (2.71)

We remark that E · j is called the energy density. We derive the same expression for
‖E‖σ by setting E = σ−1j in ‖j‖σ−1 , so both scalar products can be seen as ’energy scalar
products’.
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2.3.2 Orthogonality of Ohmic Currents

Every current distribution j may be split into j0 + j⊥ with elements j0 ∈ N(W) and
j⊥ ∈ N(W)⊥. Here, we answer the question 5, where we ask for the relation between
ohmic current distributions and the spaces N(W) and N(W)⊥.

Definition 2.17 We call a current distribution j ∈ Hdiv(B) an ohmic current distribu-

tion if j is a solution of (2.65) for some σ ∈ Σ and some g ∈ H
1
2 (B). We use the

notation jσ for an ohmic current distribution whenever σ ∈ Σ and jσ ∈ Hdiv(B) satisfy
curlσ−1jσ = 0 in B.

Note that the conductivity distribution σ is not uniquely determined by jσ. If σ ∈ Σ
solves curlσ−1jσ = 0 then cσ with c ∈ R+ satisfies this relation, too.

The next theorems show that the ohmic current distribution is orthogonal to the
nullspace of the Biot-Savart operator in some sense.

Theorem 2.18 Let jσ be an ohmic current distribution, then

jσ ⊥σ−1 (I − SO)N(W). (2.72)

with respect to the scalar product defined by (2.70).

Proof: See [KKP], Theorem 9. Please note that their definition of the scalar product
is different from (2.70).

We are able to upgrade this statement. Recalling the result SOj0 = 0 from Theorem 2.4
for a current distribution j0 ∈ N(W), then we have SO(N(W)) = 0.

Corollary 2.19 Let jσ be an ohmic current distribution. Then holds

jσ ⊥σ−1 N(W). (2.73)

Let jσ be an ohmic current distribution, we may rewrite (2.73) as σ−1jσ ⊥ N(W ). That
means the electric field E = σ−1jσ is perpendicular to N(W). For an ohmic current
distribution j̃, which does not generate a magnetic field in the exterior domain Be of B,
we have ∫

B

j̃ · Ẽ dx =

∫
B

j̃ · σ−1j̃ dx = 〈̃j, j̃〉σ−1 = 0 (2.74)

with the electric field Ẽ = σ−1j̃ related to j̃. In a physical point of view, the current
distribution j̃ has no electric power (and must vanish). Finally, we are able to prove

Corollary 2.20 An ohmic current distribution that generates no magnetic field in the
exterior Be of B must vanish.

Proof: From the calculation (2.74) we have

‖j̃‖σ−1 = 0 (2.75)

for a current distribution j̃ which is an ohmic current distribution and belongs to N(W).
Since ‖.‖σ−1 defines a norm on L2(B) the field j̃ must vanish.
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2.3.3 A Numerical Study on the Stabilized Inversion

This section gives an overview on the results we have reached in the cooperation projects
of the Young Researchers Group ”New numerical methods for inverse problems” with
the TomoScience GbR (formerly Xcellvision), Wolfsburg. We present some photographic
pictures of fuel cells and wire grid models to get an idea of our measurements and of our
work in praxis. Some figures show that basically we are able to reconstruct the currents
from the their magnetic field by the stabilized inversion of the Biot-Savart operator. In
addition, this subsection shall show that the work in the young researcher group contains
even more than the theoretical investigation. We applied and proof the results in practise.
For this verification we had to study and solve practical problems combined with the
measurements of physical properties. Thus, by an extensive study, we should investigate
the accuracy of the stabilized inversion of the Biot-Savart operator. Here, we discuss some
of the results.

First, we describe the discretization model for the direct problem. In a view of the fuel
cell application we have decided for the finite integration technique. Second, we present
two reconstruction algorithms, the difference and the absolute reconstruction algorithm.
Basically, they arise from the practical opportunities of the measurement of the magnetic
field. The first one is well suited for the situation where we want to compare the recon-
structed current with a known current flow as for instance a homogeneous one. Moreover,
we explain how we take into account the free divergence of the reconstructed current
distribution.

At first we apply the stabilized inversion of the Biot-Savart operator to a simulated
magnetic field, i.e. we calculate the current distribution based on a given conductivity
distribution and its magnetic field. In the light of some figures we compare the stabilized
inversion via Tikhonov-regularization and the simulated currents.

Next, we present a numerical study on the reconstruction of currents in a wire grid
model from their magnetic field. A first advantage is that a wire grid does aggree with
the discretization model such that we can neglect discretization errors and may focus
on practical errors. A second advantage is that we are able to calculate and measure
the current distribution (in contradiction to the fuel cell application) and may compare
it with the reconstructed current. For fuel cells, the contacts between the layers (for
instance between a graphite plate and the membrane with the platin catalyst) may cause
a different conductivity distribution as assumed which influence and change the current
distribution inside the fuel cell such that our simulated current flow does not aggree with
the real current flow.

Furthermore, we present the reconstruction results of a prepared fuel cell. Here, a
graphite layer between the anode and cathode plate is segmented into a number of seg-
ments. This method is called segmentation method. For each segment the current can be
electrically measured, and altogether we obtain an overview of the currents in z-direction.
This way we are able to compare the reconstructed currents. Moreover, the segmentation
can be used for a test of the stabilized inversion and of the segmentation method itself. If
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we cut off some segments, the results of both methods must reflect the removed segments.
We discuss two reconstruction pictures for such a test. We do not show any reconstruc-
tion pictures of segmented fuel cells in practise since their interpretation requires detailed
knowledge of the fuel cell technology.

Discretization model

From the our industrial application, a fuel cell stack is a rectangular domain

B =
{
x = (x1, x2, x3) ∈ R3 | |x1| <

a1

2
, |x2| <

a2

2
, |x3| <

a3

2

}
(2.76)

where the currents are fed in at the base surface, i.e. for x3 = −a3/2 and are taken from
the top surface, i.e. for x3 = a3/2. Hence, for a simple characterization of the fuel cell
stack (where are areas of higher and lower reactivity) it is sufficient to analyse the currents
in x3-direction. For the grid model we use a rectangular grid G with n1, n2, n3 points in
x1, x2 and x3-direction, respectively. The knot points are defined by

pklm := (x1,k, x2,l, x3,m) (2.77)

for

k = 0, . . . , n1 − 1, l = 0, . . . , n2 − 1, m = 0, . . . , n3 − 1, (2.78)

with

xs,t := −as

2
+ t

as

ns − 1
, s = 1, 2, 3, t = 0, . . . , ns − 1 (2.79)

We call the virtual (or real) wire between a point pklm and a neighbor knot point p(k+1)lm,
pk(l+1)m,pkl(m+1) parallel to the x1, x2, x3 axis by sklmx, sklmy, sklmz and denote the current
flowing in this wires by

Iklmx, Iklmy, Iklmz. (2.80)

From the conservation law we demand∑
kl

I in
kl =

∑
kl

Iout
kl (2.81)

for the given current input I in
kl and output Iout

kl at the bottom and top surface points
pkl0, pkl(n3−1), respectively. For the index of the currents which are fed in the base surface
we use the index k = −1. Then we define

Ikl(−1)z := I in
kl , Ikl(n3−1)z := Iout

kl (2.82)

for k, l as in (2.78). The current input and output at the shell surface points p0lm,p(n1−1)lm,
pk0m,pk(n2−1)m vanishes, i.e. we set

I(−1)lmx := I(n1−1)lmx = 0, Ik(−1)my := Ik(n2−1)my = 0 (2.83)
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for k, l,m as in (2.78). Now, we have the classical conservation law also called knot rule

I(k−1)lmx + Ik(l−1)my + Ikl(m−1)z = Iklmx + Iklmy + Iklmz (2.84)

for all k, l,m as in (2.78), i.e. the sum of incoming and outflowing currents of the knot point
pklm is zero. Due to the assumption (2.81) all equations of (2.84) are linear dependent,
thus, we drop the last of the knot rules, i.e. for k = n1 − 1, l = n2 − 1,m = n3 − 1.

For the discrete model we assume that the ohmic resistance of the wire sklmζ for
ζ ∈ {x, y, z} is given by a scalar Rklmζ > 0. The voltage between the point pklm and its
neighbor points in positive ζ-direction is denoted by Uklmζ and defined by Ohm’s law

Uklmζ = Iklmζ ·Rklmζ . (2.85)

The mesh theorem states that the sum of the voltages over each closed path vanishes.
Here, we restrict ourself to the elementary meshes of G, then we have the mesh equations

Uklmx + U(k+1)lmy − Uk(l+1)mx − Uklmy = 0, (2.86)

Uklmx + U(k+1)lmz − Ukl(m+1)x − Uklmz = 0, (2.87)

Uklmx + Uk(l+1)mz − Ukl(m+1)y − Uklmz = 0. (2.88)

We note that some of these equations are linearly dependent. A complete and linearly
independent set of mesh equations are for instance given by all possible xz-mesh equations
(2.87), all yz-mesh equations (2.88), and the xz mesh equations on the top, i.e. for m =
n3 − 1.
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Figure 2.1: Discretization model with 5
points in each direction

In the presented discretization model
each corner of the elementary meshes is a
knot point. The Figure 2.1 shows the cube
[−1, 1]3 and the virtual wires of the grid
model for a discretization of 4 elementary
meshes in each direction, i.e. for n1 = n2 =
n3 = 5. Thus, we call it a [4, 4, 4] discretiza-
tion although we have 5 knot points in each
direction. Moreover, the blue arrows in Fig-
ure 2.1 indicates the currents in the grid for
a homogeneous resistance distribution and
centred input/outflow.

These introduction into the finite inte-
gration technique is taken from our paper
[KüPo], a detailed discription can be found
there. In addition, solvability and conver-
gence as well as consistency and stability is proven in this paper. Finally, the total
magnetic field is calculated by the Biot-Savart operator using a simple cubature rule for
each elementary mesh.
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Reconstruction algorithm

In praxis, the magnetic flux B(x) at the point x ∈ R3 is a sum of many influences

B(x) = Bearth(x) + Bcs(x) + Bfc(x). (2.89)

Bearth denotes the earth magnetic flux (which can be locally disturbed for instance by
some steel girders in the walls of the building where we have measured etc.). Bcs is the
magnetic flux of the current supply of the fuel cell, and Bfc is the magnetic flux of the
fuel cell we are interested in. In general, the fields Bearth, Bcs are not known but we
assume that the fields are constant in time. Thus, a very easy way of reconstruction
is the difference reconstruction. Here, we subtract two measurements from each other
where the second one is a reference measurement (for the wire grid application it can be
a homogeneous grid) denoted by Bref . Then we have

B2(x)−B1(x) = Bref (x)−Bfc(x). (2.90)

We have to convert the magnetic flux into the magnetic field where we use the linear
material relation

B = µ0µrH, µ0 = 4π · 10−7 V s

Am
(2.91)

for the exterior of the fuel cell which is usually air with a material constant µr
≈
= 1. Hence,

we have

H2 −H1 =
1

µ0

(B2 −B1). (2.92)

Since the Biot-Savart operator is a linear operator we obtain

H2 −H1 = W(jref − jfc), (2.93)

i.e. we are able to reconstruct the difference current distribution. This is a very practical
way of reconstruction since we are interested in areas of higher and lower reactivity in
fuel cells (in comparison to a homogeneous reactivity distribution).

For the stabilized inversion we use the Tikhonov regularization. An introduction into
the regularization of inverse problems is attached in the appendix in Section A.1. We
note that the plane Tikhonov regulariztion scheme

jreg := (αI +W∗W)−1W∗H (2.94)

applied to the equation Wjσ = H maps onto N(W)⊥. In the last subsection, see (2.19)
we derived the relation

jσ ⊥σ−1 N(W), (2.95)

For a homogeneous conductivity distribution σ this relation reduces to

jσ ⊥ N(W). (2.96)
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Due to the continuity, we expect a good approximation jreg ≈ jσ for a conductivity distri-
bution with small pertubations as for instance small non-conducting inclusions. Therefore,

jreg,diff := (αI +W∗W)−1W∗(H2 −H1) (2.97)

is an approximation of jref − jfc from (2.93) if jref and jfc are current distributions based
on a homogeneous conductivity and a conductivity with small inclusions, respectively.

Usually, we do not have a ”perfect” fuel cell (or we do not know if the fuel cell
is working perfectly), therefore we use another algorithm called absolute reconstruction
algorithm. Again we have two measurements, for the reference measurement we replace
the fuel cell by a conductor whose current distribution as well as its magnetic field Bsw

can be calculated and measured, respectively. We denote the calculated magnetic field by
Hsw,calc. Usually, we short-circuit the current injection points of the fuel cell by a straight
wire. Then, we obtain

B1(x) = Bearth(x) + Bcs(x) + Bfc(x), (2.98)

B2(x) = Bearth(x) + Bcs(x) + Bsw(x), (2.99)

and the magnetic field of the fuel cell can be calculated by

Hfc(x) = H1(x)−H2(x) + Hsw,calc(x) (2.100)

where we assume Bsw(x) = ν0Hsw,calc(x).
Finally, we use the information about the free divergence of the current distribution

as constraint for the minimization of the Tikhonov functional

‖Wj−H‖L2(B) + α‖j‖L2(B) (2.101)

to gain a better approximation. We call this method divergence-free Tikhonov regulariza-
tion. In detail, we have the linear constraint (the discretized divergence equation is the
knot rule (2.84)) which can be expressed by a linear equation

Aj = r (2.102)

where j is the vector of currents Iklmζ and r the right hand side which contains the
incoming and outflowing currents. The general solution of this equation is

j = j0 +N · t (2.103)

with a certain solution of (2.102) and a matrix N building a base of the nullspace of A.
Inserting this result in the discretized Tikhonov regularization we obtain

(α · I +W ∗W ) ·Nt = W ∗(H2 −H1)− (α · I +W ∗W )j0. (2.104)

From the reconstructed t we calculate the current j via (2.103).
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Current reconstruction from simulated data

Figure 2.2: Magnetic field of a current dis-
tribution on the shell of a cylinder

For a given conductivity distribution we
calculate the current distribution approxi-
mately as described in the previous para-
graphes. Afterwards we calculate the mag-
netic field H and the magnetic flux B, re-
spectively, on the shell surface of a cylin-
der that contains the stack. The Figure 2.2
shows the current distribution from Figure
2.1 and its magnetic field (red arrows) on
the shell of a cylinder.

Since the current is fed in at the base
surface and taken from the top surface we
are interested in the currents in the z-
direction. Thus, we represent the currents
Iklmz in the grid model as colored plots on the n3 − 1 slices defined by the points pklm

for each m = 0, . . . , n3− 2. Note that Ikl(n3−1) are the outflowing currents, and therefore,
we do not represent them. In this way, the Figure 2.3 discribes how the current Iz of a
fuel cell with an electric insulation is represented by a colored plot on 3 slices. Here, the
figure shows a difference reconstruction of jreg − jhom where jhom is a current distribution

Figure 2.3: Our way of the current represen-
tation in 3d. Image by TomoScience GbR.

based on a homogeneous conductivity dis-
tribution. Thus, the yellow color indi-
cates areas of large currents in negative z-
direction, red areas show small currents.

Figure 2.4 shows an example where we
compare the simulated (on the left columns)
with the reconstructed currents. For both
images we used the same conductivity dis-
tribution function in B with one electric in-
sulation close to one of the corner at the top
surface. For the left image we took a [5, 5, 5]
grid, for the right image a [7, 7, 7]-grid. We
added a noise of one percent to the simu-
lated magnetic field data and took a regu-
larization parameter α = 10−2. Both im-
ages reflect the characteristic area of lower
currents which is the effect of the low con-
ductivities in this area. In addition, both
images have small artefacts at the base of
the stack. Altogether, this example shows
that we are able to reconstruct defect inclu-
sions near the boundary of the stack.
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Figure 2.4: Simulated (left colums) and reconstructed current distributions for a [5, 5, 5]
grid (left side) and a [7,7,7] grid.

In the next example we demonstrate that the reconstruction of an interior defect,
i.e. a defect far from the boundary, is much more difficult. For the inverse problem of

Figure 2.5: Simulated (left) and recon-
structed current distributions from data
with a noise level of 0.001.

Figure 2.5 we added a noise of 0.001 to the
magnetic field data and choosed a regulariza-
tion parameter α = 10−5. The conductivity
distribution of this example is zero in two ar-
eas. The first area (blue colored in the lower
slices) is close to the boundary whereas the
second one (blue colored in the upper slices)
is pretty far away from the boundary. The
first defect is reconstructed pretty well as we
can see in the right column of Figure 2.5 but
the second defect is hardly recognizable. A
larger data error would lead to a result which
does not reflect the second defect. In addi-
tion, a larger parameter α would smooth the
result and we get blurred images, whereas
for a too small parameter typical artefacts
would mask the defects.

A complete study on the influences of the
grid size, the regularization parameter, the
data error and the location of the defect in-
clusion can be found in the paper [KKP].
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Reconstruction of currents in wire grids

Figure 2.6: Wire grid with 125 resistors and
5× 5× 6 knot points

Here, we get the magnetic field data from
measurements of the magnetic flux. A mea-
surement device can be seen in Figure 2.6.
Thus, we have to care about problems such
as calibration of the sensors, determination
of a system of coordinates, adjustment of the
fuel cells and wire grids, respectively, and
the initialization of the measurement device.
We do not deal these problems here and re-
fer to [HPSW].

The left image of Figure 2.7 shows a self-
made wire grid with a discretization of 3, 3, 2
points in x, y, z direction and the resistors
of 1Ω along the z-wires. The magnetic field
of the currents of the grid is calculated on
points of the surface of a cuboid enclosing
the wire grid (see the right image). For the
simple discretization of 3×3×2 knot points
we calculated the magnetic field exactly, i.e. we do not use a cubature rule for the Biot-
Savart operator. Instead we calculate the magnetic field part for each current Iklmζ in the
wire sklmζ and sum it up.

Figure 2.7: Wire grid with 3×3×2 knot points and simulated magnetic field (red arrows)

We base the following example on the wire grid shown in Figure 2.7. Here, we use the
absolute reconstruction algorithm as discribed above. We remove two of the resistors in
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z-direction from the wire grid, inject a current of 6A at the base (it is the point p110, the
longer wire in the left image of Figure 2.7 indicates the position) and take it from the top
surface of the wire grid (the opposite point of the injection point). Figure 2.8 compares
the simulated currents Iklmz (left image) with the reconstructed currents.

Figure 2.8: Simulated (left colums) and reconstructed current distributions in a wire grid
with 3× 3× 2 knot points and with two defects

For the second example we refer to the wire grid with 5, 5, 6 points in x, y, z direction
and 125 resistors which is shown in Figure 2.6. Here, we use the difference reconstruction

Figure 2.9: Comparison of a difference re-
construction (right) with the simulated z-
currents

algorithm. As reference measurement we
take the magnetic field data H2 of the cur-
rent distribution which bases on the default
isotropic conductivity distribution, i.e. all
resistors in z-direction have a resistance of
1Ω. The red wire in the picture indicates
the current supply of 40A. Since the cur-
rent supply is very large and the conductiv-
ities in z-direction are much smaller than in
x, y-direction we achieve an almost homoge-
neous current distribution. For the second
measurement we remove two of the resis-
tors. The Figure 2.9 shows a comparison
of the simulated difference current (left col-
umn) and the reconstructed one.

The two examples demonstrate that we
are able to reconstruct defect inclusions in
a wire grid from real measurement data.
The difficulties of this method arise from the
practical preparations of the measurement
device (sensor callibration, system of coordinates, the exact replacement for the second



62 Magnetic Tomography via the Biot-Savart Operator

measurement etc.) and the influence of data errors. Thus, as menshioned in the paragraph
Reconstruction of simulated currents interior defects are hardly reconstructable, but we
see that basically the reconstruction method works for real data.

Current reconstruction of a segmented fuel cell

Figure 2.10: Fuel cell (left) and segmentation of the graphite layer

The left image of the Figure 2.10 shows a fuel cell in the measurement device. The black
tubes are the supply pipes which provide the fuel cell with oxygen, hydrogen and take the
water/steam away from the cell. The right image reflects the supply of the oxygen and
hydrogen, the lines show the way of the gases through the cell. Moreover, it illustrates a
segmentation into 20 segments which is the main idea of the segmentation method. Here,
a graphite layer between the anode and cathode which usually carries the membrane with
the catalyst is segmented into a number of segments. Further information as well as
reconstruction results for real fuel cells can be found in [HPSW].

In the following ”dummy” reconstructions -in contradiction to a real fuel cell- the
current is not produced by the cell but injected. For these examples we again use the
difference reconstruction algorithm.

First example: First, we take the segmented layer, feed a current of 73A into the
cell, and measure the magnetic field of the resulting current distribution. Second, we
cut off two segments such that these areas are non-conducting segments and measure the
meagnetic field. The left image of Figure 2.11 shows that we cut off the segments no.
7 and 20, i.e. we have an interior defect and a defect close to the boundary. For both
situations we measure the currents of each segment. The difference of both currents is
represented by the color-plot in the middle of Figure 2.11. The right image shows the
difference reconstruction by the stabilized inversion.

As we can see both methods reflect the defects in general, but the interior defect is a
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Figure 2.11: Segmented fuel cell (left), measured currents from the segmentation method
and the reconstructed currents (right)

little bit out of place. Even for the segmentation method this defect is blurred. As we
meshioned in the introduction, we are not sure whether the segmented fuel cell do behave
like a real fuel cell and it is not clear today if the segmentation method do reflect the true
currents in a fuel cell.

Figure 2.12: Difference reconstruction where the graphite layer has defects at segments
2, 13 and 5 respectively

Second example: In the first situation we take the segmented layer with defect
segments no. 2 and 13. For the second situation we cut off the segment 5. We reconstruct
the current of the difference of the magnetic fields H1−H2. The reconstruction in Figure
2.12 shows the three defects with the right sign.
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2.4 Exterior Field Calculation from Boundary Data

As the last basic question for magnetic tomography we asked

6. How much data do we need to measure on ∂G to uniquely determine the magnetic
field H in the exterior Be?

Here, we will investigate three different settings, where different types of data are measured
on some surface ∂G ∈ C2 surrounding the domain B.

For practical applications of magnetic tomography it is important to reduce the num-
ber of measurements and the number of different field components which are measured.
In our first setting we need to know three scalar functions. Our second and third settings
require less information in the sence that we need to measure two scalar functions on the
boundary.

First setting: full magnetic field H|∂G. We assume the knowledge of the boundary
values (Wj)|∂G. The relations curlWj = −SOj from (2.9) and curl curlWj = −4Wj +
grad divWj imply 4Wj = 0, i.e. Wj has harmonic components in Be. Together with the
analyticity and the decay at infinity, we have an exterior Dirichlet problem for classical
harmonic functions in Ge for every magnetic field component. This problem is uniquely
solvable and the magnetic field is uniquely determined in Ge by its boundary values on
∂G.

Second setting: normal component ν ·H|∂G and current flux ν · j|∂B. We assume
that we know the current flux f := ν·j|∂B and the flux of the magnetic field h := ν·(Wj)|∂G.
We consider the following boundary value problem

BVP 10 (An exterior problem with Neumann condition) Let ∂G ∈ C2. For
some given f ∈ L2

◦(∂B) and h ∈ L2(∂G)

find u ∈ C1(Ge) such


curlu = gradSf in Ge,
div u = 0 in Ge,
ν · u = h on ∂G,
u(x) → 0 |x| → ∞.

(2.105)

Theorem 2.21 The boundary value problem (2.105) admits an unique solution.

Proof: To prove the uniqueness, let u be the difference of two solutions, then u is a
harmonic vector field with vanishing normal component on ∂B. Theorem 1.35 together
with Remark 1.36 implies that u must be zero.

A solution of boundary value problem (2.105) may constructed as follows. Let jf be
a solution of {

curl jf = 0, div jf = 0, in B,
γν [B]jf = f on ∂B,
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which is in fact the interior normal problem for harmonic vector fields with boundary data
f . The existence of a solution jf is proven in Theorem 1.34. A solution of the exterior
normal problem for harmonic vector fields with boundary data h + ν · Wjf ∈ L2(∂G) is
given by gradSφ with density φ ∈ L2(∂G) defined by

φ = −2(I − K∗)−1(h+ ν · Wjf ). (2.106)

For the proof we refer to Theorem A.25. Now, u = gradSφ−Wjf solves (2.105) which
can be verified by

div u = 4Sφ− divWjf = 0,

curlu = − curlWjf = SOjf = gradS(ν · jf ) = gradSf,

ν · u = ∂ν [G
e]Sφ− ν · Wjf

(A.29)
=

1

2
(K∗ − I)φ− ν · Wjf

= (h+ ν · Wjf )− ν · Wjf = h.

Moreover, the field u has the required behavior at infinity.

Third setting: tangential components ν ×H|∂G. For the third way of constructing
the magnetic field we assume to know the tangential component h := ν × (Wj)|∂G. From
4Wj = 0 and divWj = 0 we have to solve the exterior problem: For some given field
h ∈ L2

t, DIV =0(∂G)

find u ∈ C2(Ge) such



curl curlu = 0 in Ge,
div u = 0 in Ge,
ν × u = h on ∂G,
u(x) → 0 |x| → ∞,∫

∂G

ν · u ds = 0,

(2.107)

which is in fact the classical exterior Maxwell problem (A.51).

Theorem 2.22 The boundary value problem (2.107) admits an unique solution.

Proof: A solution is given by curl ~Sb with b := 2(I +M)−1h. For the proof we refer
to Corollary A.31. The proof of uniqueness is much longer. We use Green’s first vector
identity to a domain which is the intersection of Ge and a ball BR with sufficiently large
radius R∫
Ge∩BR

u·4v+ curlu· curlv+ div u div v dx =

∫
∂(Ge∩BR)

ν ·u div v+ν×u· curlv ds. (2.108)

We apply this relation to a solution u of the corresponding homogeneous problem (2.107)
and obtain ∫

Ge∩BR

| curlu|2 dx =

∫
∂BR

ν × u · curlu ds. (2.109)
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Since the field u has harmonic components, we use the asymptotic behavior (1.109) to-
gether with the condition u(x) → 0, |x| → ∞ to derive the stronger decay u = O (|x|−1).
Moreover, the partial derivatives decays by O (|x|−2). Thus, we get ν × u · curlu =
O (|x|−3), |x| → ∞. We let R tend to infinity in equation (2.109) and obtain∫

Ge

| curlu|2 dx = 0,

from where curlu = 0 follows, i.e. u is a harmonic field. Now, let q be the scalar potential
of u with u = grad q. It is a harmonic function and unique up to a constant. Due to the
behavior of harmonic functions we may choose q such that it vanishes at infinity. The
homogeneous boundary condition ν× grad q = 0 implies γ0[G

e]q ≡ c on ∂G with a c ∈ R.
Finally, an application of Green’s first identity∫
Ge∩BR

| grad q|2 dx =

∫
∂(Ge∩BR)

q
∂q

∂ν
ds = −c

∫
∂G

ν · u ds+

∫
∂BR

q
∂q

∂ν
ds =

∫
∂BR

q
∂q

∂ν
ds (2.110)

together with the asymptotics of harmonic functions (1.109), (1.110) yields u = grad q =
0.

Each of the three settings provides a way to determine the magnetic field in the exterior
of the domain G by measurement data on ∂G and ∂B, respectively. Moreover, since Wj
is analytic in Be, it is just uniquely determined in all of Be. Of course, all results are true
if B and G coincides, but often in praxis the magnetic field components are measured on
a different measurement surface.

Comparing the three methods, the first one assumes overdetermined data. On the
one hand this increases the measurement cost but on the other hand overdetermined
measurement data lead to a more stabilized calculation of the magnetic field. The second
method provides a very efficient way of calculation. In our experiments, the current flux
ν · j was given by the measurement device (in detail, by two points the current flowed
out of and into the fuel cell). Therefore, for different fuel cells, we just need to measure
the normal component of the magnetic field on a previously defined surface (mostly the
surface of a cuboid). The third method is an example from which we will show that the
current flux can be calculated from the magnetic field, i.e. ν · j|∂B and ν × (Wj)|∂B are
redundant information.

Theorem 2.23 Let ∂B ∈ C2. Furthermore, let j ∈ Hdiv=0(B) be a current distribution
and a the unique solution of the integral equation (I +M)a = 2ν × (Wj)|∂B. Then, the
relation

DIV a = −ν · j (2.111)

is satisfied.
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Proof: Let j ∈ Hdiv=0(B), then Wj ∈ H1(B). Consequently, we have ν × Wj ∈
H

1/2
t (∂B). Now, let a ∈ L2

t (∂B) be the unique solution of (I+M)a = 2ν× (Wj)|∂B. The

fields Wj and curl ~Sa have free divergence, satisfy 4Wj = 0 and 4 curl ~Sa = 0 in Be,
and vanish at infinity. From the jump relation (A.59) we derive ν × curl ~Sa = ν ×Wj.

Altogether,Wj and curl ~Sa fulfill the assumptions of the exterior Maxwell problem (2.107)
with boundary data ν × (Wj)|∂B. Its unique solvability implies that both fields must
aggree, i.e.

Wj = curl ~Sa in Be.

From (2.9) we have curlWj = −SOj = − gradS(ν · j). With the aid of the formula
curl curl = −4+ grad div we get

curl curl ~Sa = grad divSa = gradS( DIV a).

Putting both equations together we obtain

− gradS(ν · j) = gradS( DIV a) in Be

or equivalent
gradS( DIV a + ν · j) = 0. (2.112)

Hence, the single layer potential S( DIV a + ν · j must be constant in Be. The behavior
at infinity shows this constant to be zero. Therefore, S( DIV a + ν · j) = 0 on ∂B. The
injectivity of S completes the proof.

Corollary 2.24 Let j ∈ Hdiv=0(B) and h := ν × (Wj)|∂B. Then we have

ν · j = −2(I − K∗)−1 DIV h. (2.113)

Proof: From Theorem 2.23 we know that the solution a of (I +M)a = 2ν × (Wj)|∂B

satisfies DIV a = −ν · j. Building the surface divergence we obtain

DIV a + DIV (Ma) = 2 DIV h. (2.114)

Using DIV (Ma) = −K∗ DIV a we derive

(I − K∗) DIV a = 2 DIV h. (2.115)

In the proof of Theorem 2.23 we have shown ν × Wj ∈ H
1/2
t (∂B), therefore DIV h ∈

H−1/2(∂B). For a C2 boundary ∂B the operator K∗ has an integrable kernel and maps
H−1/2(∂B) compactly into H−1/2(∂B). Then, we have N(I − K∗) = {0}. We note that
the injectivity proof of Theorem A.21 holds for K = 2γ0D : H1/2(∂B) → H1/2(∂B) and
K∗ = 2∂nuS : H−1/2(∂B) → H−1/2(∂B) together with the general jumps from Theorem
A.14). Now, we derive the statement by applying the operator (I − K∗)−1 and inserting
the result DIV a = −ν · j.
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Chapter 3

Magnetic Impedance Tomography

Chapter 2 has treated the magnetic tomography problem by an inversion of the Biot-
Savart integral operator. We have seen that this problem is not uniquely solvable and, in
particular, the magnetic field in the exterior does not uniquely determine currents in the
interior of the domain B under consideration. A natural next step is to ask what further
input data or measurements, respectivly, are reasonable to use to obtain more information
about inhomogeneities of the underlying conductivity distribution.

For the fuel cell application, usually it is a standard procedure to measure the potential
on the surface of different graphit plates. Thus, the input data

ν × E|∂B (3.1)

are natural and practically realizable measurements. In Subsection 2.4 we have shown
that the normal component ν · j is already determined by the magnetic field H in Be.
This is not the case for the electrical potential ν × E on ∂B, as can be seen from the
following Section 3.1.

To start the investigation with the simplest case, in this chapter we consider piecewise
constant conductivities, in particular, we investigate one inclusion or defect D inside the
homogeneous ohmic conductor B. The inclusion domain D has non-negative conductivity
σD whereas the conductivity of B denoted by σB is positive and known, i.e. we define the
conductivity distribution σ ∈ L2(B) by

σ(x) =

{
σD x ∈ D,
σB x ∈ B \D .

(3.2)

The electric field E in the domain B solves the equations

curlE = 0, div (σE) = 0, (3.3)

which follow from Maxwell’s equations curlE = 0, curlH = j and Ohm’s law j = σE.
Together with the boundary values e = ν × E|∂B, the electric field is a solution of the
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general transmission problem: For given e ∈ L2
t, DIV =0(∂B) find a field E in an appropriate

space such that
curlE = 0 in B,

div (σE) = 0 in B,
ν × E = e on ∂B

(3.4)

are statisfied. The goal of the Section 3.1 is to calculate the electric field determined
by (3.4) where we adapt the general problem according to both cases of inclusion. In
the case of a conducting inclusion D, i.e. σD > 0, σD 6= σB, the problem (3.4) leads to
a boundary value problem with boundary condition of transmission type on ∂D. This
case is investigated in Subsection 3.1.1. The case of a defect D, i.e. σD = 0, leads to a
boundary condition of Neumann type and its solution is presented in Subsection 3.1.2.

The representation of the magnetic field for the case of piecewise constant conductivity

Wj = (σB − σD) ~SD(ν × E)− σB
~SB(ν × E)

= ~SD([ν × j])− ~SB(ν × j) (3.5)

with
[ν × j] := ν+ × j− ν− × j (3.6)

will be derivated in Subsections 3.1.1 and 3.1.2 below. The representation also reflects
the importance of the boundary data ν ×E which completes the magnetic measurements
H – similar to the Cauchy data u and ∂u/∂ν for the acoustic case.

There is an impressive number of different algorithms for shape reconstruction in in-
verse problems, see for example the books [CK1], [Po1] and the survey article [Po4]. Here,
we will use two algorithms and adapt them to the framework of magnetic tomography.
We will base both methods on the representation formula of the magnetic field (3.5) as a
sum of two single layer potentials, one over ∂B with the known input data ν × j = σBe
and one over the unknown boundary ∂D with an unknown density.

In Section 3.2 we employ the point source method for the field reconstruction. The
point source method has been developed by Potthast (see [Po1],[ErPo]) since 1996. We
follow a recent approach to the point source method due to a preprint of Liu, Nakamura
and Potthast [LNP]. With the aid of this approach we are able to reconstruct the magnetic
field in some subset of B independent of the type of the inlucion D but we are not able
to use the magnetic field to reconstruct the inclusion D which is possible for the case of
a sound-hard scatterer in [ErPo].

In Section 3.3 we employ the no response test for the domain reconstruction. The no
response test has been introduced by Luke and Potthast [LuPo] in 2003. We adapt the
basic idea and describe two approaches of the no response test, a global search strategy for
the detection of the location of D and a local search strategy for the shape reconstruction
of D.
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3.1 A Homogeneous Conductor with one Inclusion

As a motivation we consider the following situation. The conductor B contains an in-
clusion D with conductivity σD ∈ R+ ∪ {0}. We prescribe a voltage on ∂B and want
to calculate how the current distributes in B. The underlying equation can be derived
from div j = 0, Ohm’s law j = σE and the first of Maxwell’s equations of magnetostatic
curlE = 0. Together with the boundary condition ν × j = σBe on ∂B and the conduc-
tivity distribution σ ∈ L2(B) defined in (3.2) we have to solve the general transmission
problem for the impedance equation.

We do not consider the superconducting case where the electric resistance σ−1
D vanishes.

Without any detailed explaination of the physical behavior we state that the electric field
as well as the current distribution vanishs in D. Additionally, we have to introduce a
surface current distribution JD. From the conservation law we derive DIV JD = γν [D

e]j.
The magnetic field of the coupled volume and surface current distribution is given by

Wj = curl

∫
∂D

Φ(x, y)JD(y) ds(y) + curl

∫
B

Φ(x, y)j(y) dy (3.7)

= curl ~SDJD + ~SD(γ×[De]j)− ~SB(σBe). (3.8)

Since our reconstruction algorithms are based on a formula in the shape of (3.5), we do
not consider the case of a superconducting inclusion in this work.

From the general transmission problem (3.4) we derive two conclusions. First, we show
that the normal component ν · j|∂D is continuous, i.e.

ν+ · j = ν− · j or σDγν [D]E = −σBγν [D
e]E. (3.9)

For the proof we have j ∈ Hdiv(B). Let f ∈ H
1
2 (∂D), then there exist φ+ ∈ H1(B \D)

vanishing on ∂B and φ− ∈ H1(D) such that γ0[D
e]φ+ = f and γ0[D]φ− = f . The function

φ defined by

φ(x) :=

{
φ+(x) if x ∈ B \D,
φ−(x) if x ∈ D (3.10)

belongs to H1
0 (B) since φ vanishes on ∂B and the function as well as its first partial

differentials belong to L2(B). Hence, we have div (φj) ∈ L2(B), and with the aid of
Gauss’ divergence theorem∫

∂D

f(γν [D]j + γν [D
e]j) ds =

∫
D

div (φ−j) dx+

∫
B\D

div (φ+j) dx

=

∫
B

div (φj) dx

=

∫
∂B

φν · j dx = 0.
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This equation holds in the sence of the dual system 〈H 1
2 (∂D), H− 1

2 (∂D)〉 for each f ∈
H

1
2 (∂D), consequently γν [D]j + γν [D

e]j = 0.
Second, we show that the tangential component ν×E|∂D is continuous in the sence of

ν+ × E = ν− × E or γ×[D]E = −γ×[De]E. (3.11)

For the proof we consider some field v ∈ H
1
2 (∂B). Then, there exist fields w+ ∈ H1(B\D)

vanishing on ∂B and w− ∈ H1(D) such that γ0[D
e]w+ = γ0[D]w− = v. The field w

defined by

w(x) :=

{
w+(x) if x ∈ B \D,
w−(x) if x ∈ D (3.12)

belongs to H1
0(B). We observe div (E×w) = E curlw ∈ L2(B) and∫

∂D

v · (γ×[D]E + γ×[De]E) ds =

∫
∂D

v · γ×[D]E ds+

∫
∂D

v · γ×[De]E ds

=

∫
D

div (E×w−) dx+

∫
B\D

div (E×w+) dx

=

∫
B

div (E×w) dx

=

∫
B

ν · (E×w) ds = 0,

consequently γ×[D]E + γ×[De]E = 0.
In the next two subsections we redefine the general transmission boundary problem

(3.4) due to the transmission condition (3.9). For σD ∈ R+ \ {σB} we will transform the
problem in Subsection 3.1.1 with the aid of the scalar potential u of E into a boundary
value problem for the impedance equation. For σD = 0 the transmission condition (3.9)
reduces to the Neumann condition ν+ · j = 0 which we treat in Subsection 3.1.2. With re-
spect to the Lipschitz continuous boundary ∂D we show uniqueness and existence of both
problems. Further, we calculate the magentic field of the resulting current distribution.
Finally, Subsection 3.1.3 shows the numerical implementation of the problems where we
make use of the FEM-solver FEMLAB and of the boundary integral method.

3.1.1 Transmission Boundary Condition

Here, the conductivity distribution σ ∈ L2(∂B) defined by (3.2) is strict positive since
σD, σB ∈ R+. With the electrostatic potential u with E = gradu the generalized trans-
mission problem (3.4) reduces to the following boundary value problem:
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BVP 11 (Impedance equation with transmission and tangential condition)
Let ∂D ∈ C0,1, ∂B ∈ C2. For some given e ∈ L2

t, DIV =0(∂B)

find u ∈ H1(B) such

{
div (σ gradu) = 0 in B,

γ× gradu = e on ∂B.
(3.13)

For the existence and uniqueness proof we introduce the following boundary value
problem.

BVP 12 (Interior Dirichlet problem for the impedance equation) Let ∂D ∈
C0,1, ∂B ∈ C2. For some given f ∈ H 1

2 (∂B)

find q ∈ H1(B) such

{
div (σ grad q) = 0 in B,

q|∂B = f on ∂B
(3.14)

This problem has an unique solution for each boundary data, see [GiTr], Theorem 8.3.

Theorem 3.1 A solution u ∈ H1(B) of problem (3.13) is uniquely determined up to a
constant.

Proof: Let u1, u2 be two solutions of (3.13), then u := u2− u1 solves the corresponding
homogeneous problem. Since D ⊂ B we have

4u = 0 (3.15)

in a neighborhood of ∂B. From the homogeneous boundary data we have GRADu = 0
on ∂B which implies u|∂B = c for a c ∈ R. Now, the function u solves the elliptic problem
(3.14) with boundary data f ≡ c. Its unique solvability implies u = c in B and the proof
is complete.

Theorem 3.2 There exists a solution u ∈ H1(B) of problem (3.13).

Proof: We show that a solution q of the problem (3.14) with boundary value f ∈
H

1
2
◦ (∂B) determined by 4∂Bf = CURL e and ∂B ∈ C2 is a solution of problem (3.13).

For the function CURL e ∈ H−3/2(∂B) holds

〈CURL e, 1〉 =

∫
∂B

DIV (ν × e) ds = 0. (3.16)

The isomorphism 4∂B : H
1
2
◦ (∂B) → H

−3/2
◦ (∂B) implies that the equation 4∂Bf =

CURL e has an unique solution f ∈ H
1
2
◦ (∂B). Now, we use the unique solvability of

the elliptic problem (3.14). Let q ∈ H1
4(B) be the unique solution of (3.14), then we

verify

DIV (ν × GRAD q|∂B − e) = −CURL GRAD f − DIV e = 0, (3.17)

CURL (ν × GRAD q|∂B − e) = DIV GRAD f − CURL e = 0. (3.18)
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Finally, we have div (σ grad q) = 0 and ν× GRAD q|∂B−e = 0, consequently γ× grad q =
e, i.e. the function q solves the problem (3.13).

Corollary 3.3 The boundary value problem (3.13) admits an unique solution for each
e ∈ L2

t, DIV =0(B).

The magnetic field caused by the current distribution j is determined by

Wj = curl
∫

B\D
Φ(., y)j(y) dy + curl

∫
D

Φ(., y)j(y) dy

= −
∫

B\D
curl y{Φ(., y)σBE(y)} dy −

∫
D

curl y{Φ(., y)σDE(y)} dy

= −σB

∫
∂D

Φ(., y)γ×[De]E(y) dy − σB

∫
∂B

Φ(., y)γ×[B]E(y) dy

−σD

∫
∂D

Φ(., y)γ×[D]E(y) dy

= (σB − σD) ~SD(ν × E)− σB
~SB(ν × E). (3.19)

Thereby, we use γ×[D]E = −γ×[De]E from (3.11).

3.1.2 Neumann Boundary Condition

In praxis we are often faced with the situation that a conductor has a defect or a non-
conducting inclusion, respectively. Consequently, the current distribution j vanishes in
D. The normal component γν [D

e]j vanish due to the transmission condition (3.9). Thus,
we have the following boundary value problem

BVP 13 (Impedance equation with Neumann and tangential condition) Let
∂D ∈ C0,1, ∂B ∈ C2. For a given field e ∈ L2

t, DIV =0(∂B)

find E ∈ Hdiv(B \D) ∩Hcurl(B \D) such


curlE = 0 in B \D,
div E = 0 in B \D,
ν · E = 0 on ∂D,
ν × E = e on ∂B.

(3.20)

Theorem 3.4 A solution of problem (3.20) is uniquely determined.

Proof: Let E be a solution of the corresponding homogeneous problem and u its scalar
potential. As already shown in the proof of Theorem 3.1 the condition ν × gradu = 0
implies u|∂B = c with c ∈ R3. For the harmonic function u we observe∫

∂B

∂u

∂ν
ds =

∫
∂B

∂u

∂ν
ds+

∫
∂D

∂u

∂ν
ds =

∫
∂(B\D)

∂u

∂ν
ds = 0. (3.21)
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Together with Green’s first identity we obtain∫
B\D

| gradu|2 dx =

∫
∂(B\D)

u
∂u

∂ν
ds = c

∫
∂B

∂u

∂ν
ds = 0 (3.22)

from which E = gradu = 0 follows.

We show the existence of a solution by reducing the problem to the boundary value
problem of Laplace’ equation with mixed boundary condition of Dirichlet and Neumann
type

find q ∈ H1(B) such


4q = 0 in B,
q|∂B = f on ∂B,

∂q
∂ν

= 0 on ∂D
(3.23)

with f ∈ H
1
2
◦ (∂B) defined by 4∂Bf = CURL e. We understand the boundary condition

in the sence of the trace operators γ0[B] and γν [D
e]. We additionally note, that we have

∂B ∈ C2, and thus, the Laplace-Beltrami operator 4∂B : H
1
2
◦ (∂B) → H

− 3
2

◦ (∂B) is well
defined and an isomorphism.

Theorem 3.5 The problem (3.20) has a solution.

Proof: The mixed boundary value problem (3.23) has a solution q ∈ H1(B\D). For this
proof we refer to [McL], Theorem 4.10, where we use that the corresponding homogeneous
problem has only the trivial solution (it follows by a simple application of Green’s first
identity). Then, the field grad q is harmonic and it fulfills the boundary condition ν ·
grad q = 0 on ∂D. Moreover, the relation ν × grad q = e holds which we have already
shown in the proof of Theorem 3.2. Finally, grad q turns out to be a solution of problem
(3.20).

Corollary 3.6 The boundary value problem (3.20) admits an unique solution for each
e ∈ L2

t, DIV (B) with DIV e = 0.

Concluding, we calculate the magnetic field by

Wj = curl
∫

B\D
Φ(., y)j(y) dy = −

∫
B\D

curl y{Φ(., y)σBE(y)} dy

= −σB

∫
∂D

Φ(., y)γ×[De]E(y) dy − σB

∫
∂B

Φ(., y)γ×[B]E(y) dy

= σB
~SD(ν × E)− σB

~SB(ν × E). (3.24)
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3.1.3 Numerical Implementation

In this section, we describe how to compute the numerical solution of the boundary value
problems and the magnetic field. Here, we present two different methods which we have
used for the computation of all 4 numerical examples of the next Section. On the one
hand we use the finite element method by the commercial software FEMLAB 3.1 and on
the other hand the boundary element method based on an boundary integral equation.
For both methods the results coincide very well up to an relative error of 0.5%. Further,
we explain the numerical implementation of the single layer operators which we use to
calculate the magnetic field from the electric field. The numerical computation of the
point source method as well as the no response test are based on the implementation of
the single layer potential. Thus, this subsection prepares for the numerical study of the
inverse problem.

In our numerical examples we give special boundary values on the boundary ∂B.
Then, we are able to reduce the problem as already shown in the proofs of the Theorems
3.2 and 3.5. In all 4 numerical examples the boundary values e have the shape ν× gradu
where u is a harmonic function on B as for instance Φ(., p) with a source point p ∈ Be.

Then, the function f ∈ H1/2
◦ (∂B) defined by 4∂Bf = CURL e is given by u|∂B because

4∂Bf = CURL e = CURL (ν × gradu) = DIV GRADu = 4∂Bu|∂B. (3.25)

Altogether, we solve the impedance problem (3.14) with Dirichlet data u|∂B and the
Laplace problem (3.23) with mixed Dirichlet and Neumann data, respectively. Then, we
obtain the electric field by the gradient of this solution. This solution is performed by
FEMLAB 3.1. For the application of the FEM we assume that consistency, stability and
convergence is proven. With the aid of the numerical example ’scene 1’, see Figure 3.8,
we explain the basic implementation steps. The commands

domainD=sphere2(’0.5’,’pos’,{’-0.5’,’0’,’0’});

domainB=sphere2(’2’);

domain=domainB-domainD;

create the domains B,D,B \D. By

fem.mesh=meshinit(fem, ...

’hmaxfact’,0.8, ...

’hcutoff’,0.008, ...

’hgrad’,1.35, ...

’hcurve’,0.35);

we build up a volume grid on B \D with some constants that define the size and shape
of the triangles. With the constants and expressions

fem.const={’px’,0,’py’,0,’pz’,3};

fem.expr ={’Phi’,’1./4.0/pi/sqrt((x-px).^2+(y-py).^2+(z-pz).^2)’};
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we set the boundary conditions by

bnd.g = {0,0};

bnd.r = {0,’Phi’};

bnd.type = {’neu’,’dir’};

bnd.ind = [2,2,2,2,2,2,1,1,1,1,1,1,2,2,1,1];

In detail, we set Neumann condition with boundary data 0 on the boundary ∂D repre-
sented by the 8 FEMLAB surface patches no. 7, . . . , 12, 15, 16. On the boundary ∂B
represented by the 8 surface patches no. 1, . . . , 7, 13, 14 we have Dirichlet condition with
boundary data ’Phi’ as defined in the FEMLAB expressions. Finally, the solution process
is started by

fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femlin(fem, ...

’solcomp’,{’u’}, ...

’outcomp’,{’u’});

Then, we get the electric field E = (Ex,Ey,Ez)t at any points p in B by

[Ex,Ey,Ex]=postinterp(fem,’ux’,’uy’,’uz’,p);

where ux denotes the x-component of the gradient of the solution u. For the calculation
of the magnetic field given by

Wj = (σB − σD) ~SD(ν × E)− σB
~SB(ν × E). (3.26)

we just calculate ν × E|∂D since ν × E|∂B is given by the boundary data e, i.e. we take
the mesh points p on ∂D. The magnetic field can be calculated in the same way as for
the boundary element method. We explain the calculation at the end of this subsection
after we have declared the computation of the single layer potential.

For the second method we represent the electric field in terms of

E = gradSDφ+ curl ~SBb. (3.27)

We note that this method requires a C2 boundary ∂D. For our application the boundary
∂D has regular corners and edges. Anyway, we apply the boundary element method and
say that the disretized boundary ∂D̃ which arises from a triangulation of ∂D approximates
a C2 boundary. We assume that the numerical solution on ∂D̃ approximates the true
solution on the Lipschitz boundary ∂D.

Theorem 3.7 Let e ∈ L2
t, DIV =0(∂B). The field E = gradSDφ+ curl ~SBb is a solution of

the general transmission problem (3.4) provided (φ,b) solves the integral equation system[(
I 0
0 I

)
−

(
σB−σD

σD+σB
K∗DD 2σB−σD

σD+σB
ν · curl ~SBD

2ν × gradSDB MBB

)]
·
(
φ
b

)
=

(
0
−2e

)
. (3.28)
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The first subscript of the operators denotes the domain whose boundary is the boundary
of integration, the second one denotes the domain on whose boundary the potential is
evaluated.

Proof: Let (φ,b) solve the integral equation (3.28). We define E := gradSDφ +

curl ~SBb. The field E is analytic in D and in B \ D since SDφ and ~SBb are analytic
therein. From the second equation of (3.28) we derive

(I −MBB)b = −2e + 2ν × gradSDBφ (3.29)

which implies γ×[B]E = e together with the jump relation (A.59) of curl ~SBb . Using
DIV (ν × v) = −ν · curlv for a field continuously differentiable in a neighborhood of ∂B,
we see that the right side of (3.29) is an element of L2

t, DIV =0(∂B). The operator I−MBB

is bijective on this space by Theorem A.30, and thus, we have DIV b = 0. Now, with the
relation

curl curl ~SBb = (−4+ grad div ) ~SBb = grad ~SB DIV b = 0,

div curl ~SBb = 0,

div gradSDφ = 0

we deduce that E is a harmonic field in B\D. Finally, the first equation of (3.28) together
the jump relation (A.29) yields σDν[D]E = σBν[D

e]E, and the proof is complete.

Theorem 3.8 For each σD ≥ 0, σD 6= σB and for each tangential field e ∈ L2
t, DIV =0(∂B),

the integral equation system (3.28) has one and only one solution (φ,b)t with φ ∈ L2(∂D)
and b ∈ L2

t, DIV =0(∂B).

Proof: In order to apply Riesz’ theory, we have to make sure that the operator

A :=

(
σB−σD

σD+σB
K∗DD 2σB−σD

σD+σB
ν · curl ~SBD

2ν × gradSDB MBB

)
(3.30)

is compact. Since σD 6= σB the scalar σB−σD

σD+σB
does not vanish. MBB and K∗DD are

compact operators by Lemma A.28 and Theorem A.21. The linear operators ν · curl ~SBD

and ν× gradSDB have analytic kernels and are compact, too. Altogether, A is a compact
operator from L2(∂D)×L2

t, DIV =0(∂B) into itself. It remains to show that I−A is injective,
afterwards Riesz’ theory ensures the bijectivity of I − A.

Let (φ,b) satisfy the homogeneous equation (3.28), then the field E := gradSDφ +

curl ~SBb must vanish from the uniqueness Theorems 3.1 and 3.4 for σD = 0, respectively.
With respect to the continuity of ν × gradSD across ∂D we derive

(σB−σD)ν× gradSDφ = σBν× gradSDφ−σDν× gradSDφ = σBν
+×E−ν−σD×E = 0
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Since σB 6= σD we obtain ν × gradSDφ = 0. Hence, we have GRADSDφ = 0 and
SDφ = c on ∂D with a c ∈ R. Now, the function SDφ solves the interior Dirichlet
problem for Laplace’s equation in D with constant boundary data and must be constant
therein, consequently ν− · gradSDφ = 0. The jump relation of the gradient of the single
layer potentials (A.24) leads to

φ = ν− gradSDφ− ν+ · gradSDφ = ν− · E− ν+ · E = 0

Finally, we have E = curl ~SBb satisfying (I −MBB)b = 0 which is true only for b = 0
from Lemma A.30.

Now, we turn to the implementation of the boundary integrals and explain the compu-
tation of the operator A. We produce a surface grid with a similar command as meshioned
above. Let {Trk}k=1,...,N be the set of surface triangles and pk,1, pk,2, pk,3 the corners of
the k-th triangle. We calculate the centers ck and the area Ak

ck =
1

3

3∑
n=1

pk,n, Ak =
(pk,1 − pk,3) · (pk,2 − pk,3)

2
(3.31)

of each triangle. Then, we compute the single layer potential on ∂B with density φ by
the midpoint rule

(SBφ)(x) =

∫
∂B

Φ(x, y)φ(y) ds(y) ≈
N∑

k=1

AkΦ(x, ck)φk, x ∈ R3 \ ∂B. (3.32)

where φk =
∑3

n=1 φ(pk,n)/3. Altogether, we first approximate the boundary by a 3d-
polygon and apply the integral operator on the polygon, then we approximate the integral
by the midpoint rule. One can show that the sum converges to the exact integral value
when the size of the triangles goes to zero, it is a linear convergence rate. Anyway, it is
the most easiest way of implementation and that’s why we use this integration formula
for our numerical study. Of course, there are many ways to increase the performance but
our intention is just to give a proof of concept of the point source method and the no
response test.

The cost of memory is very large because we treat vector fields in three dimension.
Indeed, our densities in the integral equation (3.28) are tangential vector fields, thus we are
able to decrease the size of vectors and matrices by introducing local coordinates on the
boundaries in two tangential directions and in normal direction. Let (~e1(x), ~e2(x), ~e3(x))
be local coordinates with ~e3(x) = ν(x) on the boundary ∂B, then b ∈ L2(∂B) has an
unique representation

b(x) = b1(x)~e1(x) + b2(x)~e2(x) + b3(x)~e3(x), x ∈ ∂B, (3.33)

Applying the midpoint rule we compute the vectorial single layer potential by

( ~Sb)(x) =

∫
∂B

Φ(x, y)b(y) ds(y) ≈
N∑

k=1

AkΦ(x, ck)(b1~e1,k + b2~e2,k + b3~e3,k) (3.34)
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where b3 = 0 if b is a tangential vector field. We determine the local coordinates
~e1,k, ~e2,k, ~e3,k of each triangle such that ~e3,k = νk is the exterior normal vector of the
k-th triangle, ~e1,k the normalized vector ck− pk,1, and ~e2,k := ~e3,k×~e1,k. Now, we are able

to implement the operators ν · curl ~SBD : L2(∂B) → L2(∂D) by

ν(x) · curl ( ~SBDb)(x) =

∫
∂B

ν(x) · grad xΦ(x, y)× b(y) ds(y) (3.35)

≈
N∑

k=1

Ak

3∑
i=1

bi,k grad xΦ(x, ck) · ~ei,k × ν(x). (3.36)

Furthermore, we implement the operator ν × gradSDB : L2(∂D) → L2(∂B) by

ν(x)× grad (SDBφ)(x) =

∫
∂B

ν(x)× grad xΦ(x, y)φ(y) ds(y) (3.37)

≈
N∑

k=1

Akν(x)× grad xΦ(x, ck)φk. (3.38)

If we evaluate the operators I−K∗DD and I−MBB in this way, we get problems because of
the weakly singular integral kernels. We deal this problem by cutting off the singularities.
Consider for example the weakly integral operator

(K∗Dφ)(x) =

∫
∂D

ν(x) · grad xΦ(x, y)φ(x) ds ≈
N∑

k=1

Akν(x) · grad xΦ(x, ck)φk (3.39)

which we evaluate at the discretization points cn, n = 1, . . . , N by setting the diagonal
matrix entries to zero. Then, the matrix entries (I − K∗)n,k, n = 1, . . . , N, k = 1, . . . , N
are

(I−K∗)n,k :=

{
Ak

4π
νn·(ck−cn)
|cn−ck|3

, if n 6= k,

0, if n = k .
(3.40)

Next, we explain how to build the matrix I − M associated to the operator I −MBB

in local surface coordinates. Assume that a ∈ L2
t, DIV =0(∂B). Using the local surface

coordinates, the equation (I −MBB)b = −2a can be written as

−2a1(x)~e1(x)− 2a2(x)~e2(x) = b1(x)~e1(x) + b2(x)~e2(x) + b3(x)~e3(x)

−2

∫
∂B

~e3(x)×
{

grad xΦ(x, y)×
{
b1(y)~e1(y) + b2(y)~e2(y) + b3(y)~e3(y)

}}
ds(y)

The integral on the right side is orthogonal to ~e3(x), therefore b3(x) = 0 on ∂B, and b
must be a tangential vector field. Define ~g(i)(x, y) := grad xΦ(x, y)×~ei(y), i = 1, 2, so we
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simplify the equation system further

−2a1(x)~e1(x)− 2a2(x)~e2(x) = b1(x)~e1(x) + b2(x)~e2(x)

−2

∫
∂B

~e3(x)×
{
b1(y)~g

(1)(x, y) + b2(y)~g
(2)(x, y)

}
ds(y)

The terms

~e3(x)× ~g(i)(x, y) = ~e3(x)×
3∑

j=1

{~g(i)(x, y) · ~ej(x)}~ej(x)

= {~g(i)(x, y) · ~e1(x)}~e2(x)− {~g(i)(x, y) · ~e2(x)}~e1(x) (3.41)

for i = 1, 2 lead to a respresentation of the integral in tangential coordinates. By a
comparison of coordinates we obtain the equation system

b1(x) + 2

∫
∂B

b1(y)~g
(1)(x, y) · ~e2(x) + b2(y)~g

(2)(x, y) · ~e2(x) ds(y) = −2a1(x), (3.42)

b2(x)− 2

∫
∂B

b1(y)~g
(1)(x, y) · ~e1(x) + b2(y)~g

(2)(x, y) · ~e1(x) ds(y) = −2a2(x). (3.43)

We define the kernels of the integrals by

Gi,j(x, y) := ~g(i)(x, y) · ~ej(x) = (~ei(y)× ~ej(x)) · grad xΦ(x, y), i, j = 1, 2. (3.44)

Using this notation and the discretization from above, by an application of the midpoint
rule, we obtain the full discretized system

b1,n + 2
N∑

k=1

G1,2(cn, ck)Akb1,k +G2,2(cn, ck)Akb2,k = −2a1,n, (3.45)

b2,n − 2
N∑

k=1

G1,1(cn, ck)Akb1,k +G2,1(cn, ck)Akb2,k = −2a2,n. (3.46)

Here, we set Gi,j(cn, ck) = 0,∀i, j = 1, 2 if n = k accordant to the singularity cut off.

Remark 3.9 We do not arbitrarily set the matrix elements K∗
n,n, n = 1, . . . , N and Mn,n

resp. to zero. Let Trk be the k-th triangle of the surface grid of ∂D, then for x ∈ Trk∫
Trk

ν(x) · grad xΦ(x, y)φ(x) ds(y) = 0 (3.47)

since ν(x) = νk ⊥ x− y, ∀y ∈ Trk \ {x}. Furthermore, we have∫
Trk

Gi,j(x, y)bi(y) ds(y) = 0 (3.48)
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for all i, j = 1, 2 and x ∈ Trk. This can be deduced by the definition of Gi,j(x, y) and

~ei(y)× ~ej(x) = ~ei × ~ej ⊥ x− y, ∀y ∈ Trk \ {x} if i 6= j,
~ei(y)× ~ei(x) = ~ei × ~ei = 0 ∀y ∈ Trk, i = 1, 2.

Now, we are able to evaluate the electric field and the current distribution by the
corresponding ansatz field. To calculate the magnetic field we just need to evaluate
ν × E|∂D = ν × ( gradSDφ + curl ~SBb), which is continuous across ∂D. To avoid the
difficulties arising with calculating the integral gradSDφ on the same disretization points
ck we suggest the following calculation. For every triangle Trk we evaluate νk×E(pk,i) on
the corners pk,i, i = 1, 2, 3 and take the average of these three results

ν∂D × E(ck) ≈
1

3

3∑
i=1

νk × E(pk,i).

We note that Wj is a continuous field in R3, and the evaluation on ∂B can be done
without giving attention to jumps. Using the representation (3.26) we again have to avoid

the numerical difficulties that arise when we evaluate ~SB(e) at the points ck. Due to the
continuity of the single layer potential we the approximate

(Wj)(ck) ≈
1

3

3∑
i=1

(Wj)(pk,i).
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3.2 Field Reconstruction by the Point Source Method

In this chapter we have focussed on a homogeneous conductor with one homogeneous
inclusion, i.e. the conductivity distribution is given by

σ(x) =

{
σD x ∈ D,
σB x ∈ B \D .

(3.49)

with σD ≥ 0, σD 6= σB. The magnetic field of an ohmic current distribution based on the
conductivity distribution σ can be calculated by the formula

Wj = (σB − σD) ~SD(ν × E)− σB
~SB(ν × E) (3.50)

which is derived in the last subsections. This representation formula together with the
mapping properties of the single layer potential imply that the magnetic field is continuous
in R3 and analytic in D,B \ D and Be. We have observed in Section 2.4 that we can
calculate the exterior field from the boundary data ν × (Wj)|∂B. The goal of this section
is to extend the field Wj from the boundary value on ∂B into the interior of B.

For simplicity we assume that h := (Wj)|∂B is known. Since the continuation is not
uniquely determined we additionally assume the knowledge of the tangential component
of the electric field e := ν × E|∂B. In this case, the left side of equation (3.50) and the
second term on the right side are known on ∂B, i.e. the boundary values on ∂B of the
field

w(x) := (Wj)(x) + ~SB(σBe)(x) (3.51)

are given. From (3.50), the field w is a single layer potential

w(x) = (σB − σD) ~SD(ν × E)(x) = ( ~SDt)(x) =

∫
∂D

Φ(x, y)t(y) ds(y) (3.52)

with the density t = (σB − σD)(ν × E) = [ν × j] which is the difference of the tangential
components of the current distribution from the exterior and the interior. Since the field
w is an analytic field with harmonic components in De the task of this section can be
seen as an analytic extension problem where neither the boundary ∂D nor the density t
are known.

For the continuation we employ a recently developed algorithm called point source
method to calculated the field w and Wj in B \ D from the known data w|∂B. For a
function a ∈ L2(∂B), we observe∫

∂B

w(x)a(x) ds(x) =

∫
∂B

a(x)

{∫
∂D

Φ(x, y)t(y) ds(y)

}
ds(x)

=

∫
∂D

t(y)

{∫
∂B

Φ(x, y)a(x) ds(x)

}
ds(y)

=

∫
∂D

(SBDa)(y)t(y) ds(y). (3.53)
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The value of the last integral can be calculated for each function a from the known data
w|∂B. If we choose a such that SBDa approximates the fundamental solution with a point
source at z ∈ B \D

Φ(x, z) =
1

4π

1

|x− z|
(3.54)

on the boundary ∂D, i.e. for x ∈ ∂D, then by a comparison of (3.53) and (3.52) the
expression

∫
∂B

wa ds is an approximation of w(z). This approximation called point source
approximation is the basic idea of the point soure method. We discribe the details of the
point source approximation on a test domain G with D ⊂ G in Subsection 3.2.1. We will
illustrate the quality of the approximation in the light of a numerical example where we
choose a spherical non-conducting inclusion. Moreover, we show what happens when D
is not included in the test domain.

In Subsection 3.2.2 we describe the numerical realization of the point source method.
We show that the algorithms work for a non-conducting as well as for a conducting
inclusion. Thus, we choose a second example, where we have a cuboid-like inclusion with
σD = 2σB. For each scene we employ a shift algorithm where we shift a test domain
in different directions. The results of these shifts for various lines and test domains can
be sampled and yield a approximation of the magnetic field (Wj)(x) for (almost) all
x ∈ B \D.

3.2.1 The Point Source Approximation

The equation (3.52) imply that if we have a function a ∈ L2(∂B) satisfying SBDa = Φ(., z)
on ∂D, then we are able to calculate (Wj)(z) using the definition (3.51) by

(Wj)(z) =

∫
∂B

w(x)a(x, z) ds(x) + σB( ~SBe)(z). (3.55)

We note that σD is not required for this calculation. For the rest of this work we use the
notation a(., z) to make clear the dependency on the point source z. In order to solve
Φ(., z) = SBDa(., z) we remark that Φ(., z) is not in the range of SBD. The integral oper-
ator SBD : L2(∂B) → L2(∂D) is compact and injective. Moreover, since its dual operator
SDB : L2(∂D) → L2(∂B) is injective, the operator SBD has dense range. Therefore, we
can use Tikhonov regularization to gain an approximation Φ(., z) ≈ SBDa in the following
sense: For given ε > 0 we can find a density a(., z) ∈ L2(∂B) such that

‖Φ(., z)− SBDa(., z)‖L2(∂D) ≤ ε. (3.56)

Since the boundary ∂D is unknown, we cannot use this method for the reconstruction
directly. Instead, let G be a domain with D ⊂ G and G ⊂ B, then we may adapt this
argumentation for the boundary ∂G. The function Φ(., z) − SBGa(., z) is a harmonic
function on G and depends continuously on the boundary data, i.e.

‖Φ(., z)− SBGa(., z)‖L2(∂G) ≤ ε implies ‖Φ(., z)− SBDa(., z)‖L2(∂D) ≤ Cε
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with a constant C ∈ R+. We obtain an approximation Φ(., z) ≈ SBGa(., z), z 6∈ G by
using Tikhonov regularization, i.e. we solve

(αI + S∗BGSBG)a(., z) = S∗BGΦ(., z). (3.57)

Due to the dense range of SBG, there exists a regularization parameter α = α(ε) for each
ε, and α→ 0 for ε→ 0. Altogether, for small ε, the field SBa(., z) is an approximation of
the point source Φ(., z) on ∂D, and we have

w̃(z) :=

∫
B

w(x)a(x, z) ds(x) ≈ w(z), (3.58)

W̃(z) := w̃(z) + σB( ~SBe)(z) ≈ (Wj)(z). (3.59)

This is the point source approximation on the test domain G. The point source approxi-
mation holds whenever D ⊂ G, and then the approximation (3.58),(3.59) are true.

Although W̃ and Wj are the data of interest we should compare w and w̃ since the
approximation affects only the calculation of w̃. From W̃ = w̃ + σB

~SBe, the additional
term based on the known boundary data e disturbs the relative error |W̃ − Wj|/|Wj|.
That is why we focus on the comparison of w and w̃. We show that both fields coincide
very well with the following setting

Figure 3.1: Scene 1

Let B be a ball with radius 2 centered at
origin and D a ball of radius 0.5 centered
at (−0.5, 0, 0)t. The domain D modells a
non-conducting inclusion, i.e. the field E
satisfies the Neumann boundary condition
on ∂D. On ∂B, we require boundary data
ν ×E = ν × grad Φ(., p) with source point
p = (0, 0, 3)t on ∂B.

The Figure 3.2 shows a color-plot of the fields Wj and w on the xy-plane, that means we
see a slice of Wj and w.

For the point source approximation we choose the test domain G as the ball with
radius 0.65 centered at (−0.5, 0, 0)t. The Figure 3.3 shows the three components of w̃
as a color-plot in comparison to w. In addition, the values w̃

w
are shown from which we

obtain the relative error |w−w̃|
|w| by

∣∣1− w̃
w

∣∣. Moreover, Figure 3.3 shows the slice of the
scene. The slice of ∂D is black colored whereas the slice of G is white colored. The scales
of the colorbar of first and second column are set to [−Cm, Cm],m = 1, 2, 3 where Cm is
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Figure 3.2: Representation of Wj (left) and w (right) on the xy-plane

the absolute maximum of the m-th component

Cm = max
z
|(w(z))m|. (3.60)

The scales of the subplots in the last column are set to [0.98; 1.02], i.e. we look at the
relative errors in a 2-percent range.

Numerical Details: For the direct problem, we calculate the electric field E and the
magnetic field Wj as described in Subsection 3.1.2. Its numerical computation is done
with 3156 triangles on ∂D and 2862 on ∂B. For the numeric computation of the point
source approximation we perform a surface grid of ∂G consisting of 3156 triangles by the
commands

testdomain=sphere2(0.65,[-0.5,0,0]);

tdgrid=meshinit(fem,’Hmax’,0.065);
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Figure 3.3: components of w̃ (left) compared to the components of w (middle) on the
xy-plane and w̃

w
for a spherical test domain (white)

We compare the fields w and w̃ on the xy-plane. Thus, we produce an equally spaced
grid of 81 × 81 points in the plane {(x, y, 0)t | x, y ∈ [−2, 2]} and pick out the points in
G. For each of these grid points numbered by z(k) we compute

a(., z(k)) = (αI + S∗BGSBG)−1S∗BGΦ(., z(k)) (3.61)

and w̃(z(k)) as defined by (3.58). The regularization parameter α is set to 10−13.

As we can see, these are very good approximations. Whenever D ⊂ G, the reconstructed
field and the exact field coincide very well. We want to verify this statement with another
choice of the test domain. For the next example let G be an ellipsoid with semiaxis 1.05 in
x-direction and 0.67 in y,z-direction centered at the origin. We remark that D is enclosed
by ∂G for this configuration. Here, we build up a surface grid by the FEMLAB commands

testdomain=ellipsoid2(1.05,0.67,0.67);



88 Magnetic Impedance Tomography

Figure 3.4: components of w̃ (left) compared to components of w (middle) and w̃
w

on the
xy-plane for an elliptic test domain

tdgrid=meshinit(fem,’Hmax’,0.067);

Figure 3.4 represents the components of w̃,w, and w̃/w again. The functions w̃ and w
coincide very well as we can see by a comparison of the columns 1 and 2. Column 3
highlights the quantity and the location of the differences which are in a 2-percent range
and located close to the boundary ∂G.

The question arises what happens when D 6⊂ G. The two examples below show the
behavior of the reconstructed field w̃. In the first case, G is a cube of length 1 centered at
the origin, and D is the ball from scene 1 again. Then, we have D∩G 6= ∅ and D 6∈ G. In
the second case, we choose a spherical test domain of radius 0.5 centered at 0.4 · (1, 1, 1)t

such that D∩G = ∅. Column 1 and column 2 of Figure 3.5 show the field w̃ for the cases
1 and 2 on the xy-plane whereas the column 3 shows the exact field w. The scale of each
raw is set to the range of w. Comparing the components w̃i of the left column with the
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Figure 3.5: components of w̃ for two different test domains (left,middle) compared to
components of w on the xy-plane

exact values wi, i = 1, 2, 3, we recognize that w̃ is very enlarged. In general, it seems to
reflect the behavior of the exact field in B \ {D ∪ G} but it blows up in D. Whereas w̃
in the middle column is a completely other field and has almost nothing in common with
the exact field w.

We remark that in this examples we have an analytic boundary ∂D, and the analytic
field w has an analytic extension from De across ∂D into D. In the cases above we
construct by w̃ such an extension which does not coincide with the field w in D.

3.2.2 Numerical Implementation of the Point Source Method

The observation that the field w̃ blows up when D 6⊂ G can be used to approximate w in
(almost) all of B \D. The point source method is such an algorithm. As menshioned in
the introduction of this section we want to transfer the results of the point source method
applied to obstacle scattering, und thus, we should give a brief summary. The behavior
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of the reconstructed fields for the point source method and other applications such as
inverse scattering and impedance tomography can be found in [Po1], [Po2], [Luke], [ErPo],
and many more. Firstly, the point source method was designed for field and domain
reconstruction in scattering theory with the knowledge of the boundary condition. In
[ErPo], the authors apply the point source method to the impedance tomography, i.e.
the electric field is reconstructed from the voltages of one injected current. They choose
spherical test domains Gz depending on the point source z 6∈ Gz and attach Gz in a
certain direction of z. Then, they perform the point source approximation for all z ∈ B
and some directions to reconstruct the electric field. Further, they detect the boundary
of a perfectly conducting inclusion as the zero-levelset of the reconstructed total electric
field. In our case, we do not have such a criterion to determine the boundary ∂D because
we do not know the boundary condition. Anyway, we transfer this algorithm from [ErPo]
and together with the observation of the behavior of w we are able to roughly locate the
unknown domain D.

We assume that we have a scalar L ∈ (0, 1) such that diam(D) < 2L. For every z ∈ B
let G

(n)
z be a test domain

G(n)
z := {BL(pz) | pz = z + (L+ 0.01)dn} (3.62)

with a normalized direction vector dn, i.e. G
(n)
z is a ball of radius L attached in the

direction dn from z such that dist(z, BL(pz)) = 0.01. In the following numerical examples
we take direction vectors

dn :=

(
cos

(
2πn

8

)
, sin

(
2πn

8

)
, 0

)t

, n = 1, . . . , 8. (3.63)

Let us pick up the scene 1 from Figure 3.1. We test with balls of radius 0.75. First, we
calculate w̃(z) for the test domains G

(8)
z with d8 = (1, 0, 0)t for all admissible z, i.e. for all

z such that BL(pz) ⊂ B. The first column of Figure 3.6 illustrates the three components
of w̃(z) on the xy-plane. The scale is set to [−Cm, Cm] according to the scale of plot 3.2,
so we are able to compare the results with the exact field w. Next, we perform the point
source approximation for the test domains G

(4)
z with direction vector d4 = (−1, 0, 0)t.

Here, the balls are attached ’left’ from z with a distance 0.01. The resulting field w̃(z)
on the xy-plane is reflected by the second column of Figure 3.6. The third and fourth
columns of Figure 3.6 illustrate w̃(z) where we have attached the balls in positive and
negative y-direction from z. For every n = 1, . . . , 8 we call the region

En :=
{
z ∈ B | D ⊂ G(n)

z , Gz
(n) ⊂ B

}
(3.64)

enlighted area. It is the region where the approximation w̃(z) ≈ w(z) holds. One can see
in Figure 3.6 that the values blow up outside of the enlighted areas and the sign changes
very rapidly which is a typical characteristic that the corresponding domains does not
include D.
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Figure 3.6: w̃(z) for the test domains G
(k)
z , k = 8, 4, 2, 6 on the xy-plane

The results for the 8 direction vectors can be sampled and yield a pretty good ap-
proximation of the exact field w. Figure 3.7 shows a composition of the results for
dn, n = 1, . . . , 8. In detail, we divide the slice in 8 areas Ωn which are the 8 circle sectors

Ωn =


 cos t− 0.5

sin t
0

 ∣∣ 4πn− 1

16
≤ t <

4πn+ 1

16

 . (3.65)

If z ∈ Ωn we take w̃(z) from the test with direction vector dn. Putting w into the middle
column of Figure 3.7 we are able to compare the values of the enlighted area with the
exact ones. The right column shows w̃/w. Looking at the scale, the relative error of
the enlighted area is in a 5-percent range, mostly much smaller. We remark that the
horizontal line in the first component of the third column is the region where the exact
values are almost zero, therefore w̃/w is increased there, the same problem occurs in the
second and third component of the fields.
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Figure 3.7: composition of the test results with the direction vectors dn, n = 1, . . . , 8 (left
column) compared to the exact field w (middle) and w̃

w

Computational cost: For every BL(pz) ∈ G
(n)
z , n = 1, . . . , 8 we build a surface grid of

3156 triangles and have to solve the Tikhonov regularization equation (3.61) where the
matrix of discretized operator SBG has 3156×3156 entries. That means, for each direction
vector dn, n = 1, . . . , 8 and for each admissible z we have to solve such an equation. On the
area [−2, 2]× [−2, 2] in the xy plane, we take a discretization of 81×81 points from which
about 500 admissible points z remain. Summarizing, we solve the Tikhonov regularization
4000 times. In a view of the large amount of computations we use parallelized algorithms
where we put together more than 20 computers and assign the tests of domains BL(pz)
to the different processors. This way, we have decreased the time for computation to 10
hours. Of course, by using rougher grids we considerable reduce the computation time.
Indeed, we have focused on a proof of concept and left aside the computatinal cost.

One of the biggest advantages of the point source approximation is that the boundary
condition is not required. Here, the method works regardless of the value of σD ≥ 0, σD 6=
σB. To accomadate this, we give another numerical example.
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Figure 3.8: Scene 2

Let D be an ellipsoid with semiaxis
0.65; 0.25; 0.25 and center in the origin.
Again, B is a ball of radius 2 also centered
at the origin. The conductivities are σB =
1, σD = 2, so we have a typical transmission
problem. The tangential componenents on
∂B fulfills ν × E = ν × ( grad Φ(x, p1) −
grad Φ(x, p2)) with point sources at p1 =
(0,−2, 2)t and p2 = (0, 2, 2)t.

Figure 3.9: Representation of Wj (left) and w (right) on the xy-plane
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Numerical details: The direct problem has been solved as discribed in Subsection
3.1.3. For computation we use boundary grids consisting of 2452 triangles on ∂D and
3156 triangles on ∂B, thus we have 2452 + 2 · 3156 = 8764 unknowns. Afterwards,
the magnetic field Wj has been calculated from equation (3.19). Figure 3.9 shows the
components of the fields Wj and w on the xy-plane.

The following figures show the reconstruction of the magnetic field by the point source
method with spherical test domains of radius 1 which are kept fixed at a distance 0.01
from z. Figure 3.10 shows the results for direction vectors in positive and negative x and
y-direction. We observe that for every direction vector the region of admissible points

Figure 3.10: w̃ for test domains G
(k)
z , k = 8, 4, 2, 6 on the xy-plane

z is much smaller than in scene 1, compare Fig. 3.6, because we have choosen larger
test domains. Figure 3.11 illustrates a composition of the results for the direction vectors
dn, n = 1, . . . , 8 in comparison to the exact field in the middle column. Again, the right
column indicates that the errors are small.

Here, the unknown domain D is an ellipsoid with strong ellipticity in x-direction. We
note, that by testing with balls of radius 1 we can not approximate w̃ near the boundary
at all. There is a small area which is not covered by this tests. In this case, we suggest to
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Figure 3.11: Composition of the results for G
(k)
z , k = 1, . . . , 8 (left) in comparison to the

exact field (middle) and w̃(z)
w(z)

choose different test domains for each direction vector. For instance we could test with
cuboids or balls with radius different from 1. Furthermore, we could take more direction
vectors. For above configuration, it would offer to take balls with larger radius for the
negative and positive y-direction.

We conclude this section with some remarks on the computational cost. We may
decrease the cost by using rougher grids on ∂G,∂B, and on the slices. For instance, with
a fourth of the actual used triangles on ∂G and ∂B we decrease the time to 10 minutes.
But for a full approximation, i.e. computing w̃(z) for all admissible z (not only on the
xy-plane), this method is inefficient. Looking at the point source method applied to
inverse scattering theory in R2, an efficient speed-up is available. For instance in [Po2],
Section 2.4, the author needs to solve one Tikhonov regularization for one direction vector
when shifting the test domains. It is a consequence of the behavior of the Herglotz wave
functions. The goal for future investigations is to transfer this speed-up method to the
point source method in magnetic tomography, and it seems possible by choosing another
fundamental function but Φ(., z).
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3.3 Shape Reconstruction by the No Response Test

Originally, the no response test was developed to locate scatterers in inverse obstacle scat-
tering. Here, we transfer the basic ideas and perform the no response test to the magnetic
tomography. We investigate the inverse problem: determine the unknwon domain D from
the knwon data σB, the tangential component of the electric field e := ν × E|∂B and
the magnetic field h := (Wj)|∂B. Thereby, we reconstruct the shape of the inclusion D
without the knowledge of the conductivity σD, i.e. without the knowledge of the bound-
ary condition on ∂D. The key for the application of the response test to the magnetic
tomography are the formulas of Section 3.2 on the point source approximation

(Wj)(x) = (σB − σD) ~SD(ν × E)− σB
~SB(e)(x), (3.66)

w(x) = (Wj)(x) + σB
~SB(e)(x) = ( ~SDt)(x), (3.67)∫

∂B

w(x)a(x) ds(x) =

∫
∂D

(SBDa)(y)t(y) ds(y) (3.68)

For probing with functions a ∈ L2(∂B) the value
∫

B
wa ds is called the response of a.

The relation (3.68) implies that the response is small if SBDa is small on ∂D. Since the
boundary of D is unknown, we again work with test domains. Let G be a test domain
with G ⊂ B. If G contains D then for all test functions a such that SBa is small on G and
large outside the integral

∫
∂B

wa ds is small, too. If D 6⊂ G then there exists a function
a such that (3.68) is large. Consequently, the unknown domain D is contained in all test
domains for which the response of all small test functions a is small. This is the basic
idea of the no response test.

In Subsection 3.3.1 we give a more detailed discription of the no response test. We
explain how we perform this test algorithm to a test domain, especially we answer the
question for the choice of the test functions a. The numerical examples of Subsection
3.3.2 show that in principle we are able to reconstruct the shape of conducting inlucions
as well as non-conducting inclusions. We present two approaches of the no response test
where we give two different strategies for the choice of the test domains.

3.3.1 Realization of the No Response Test

For a test domain G the test algorithm is given by

Algorithm 3.10 The test algorithm decides whether a certain test domain is called pos-
itive (=no response), i.e. we mean that it contains the unknown domain D, or negative.

• Let G with G ⊂ B be a test domain, for ε > 0 define

M(G, ε) :=
{
a ∈ L2(∂B) | ‖(SBa)|G‖C(G) ≤ ε

}
. (3.69)
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• Calculate

I(G, a) :=

∫
∂B

w(x)a(x) ds(x), (3.70)

Iε(G) := sup
a∈M(G,ε)

|I(G, a)|. (3.71)

• Choose a cut off parameter C > 0 and call G positive if Iε(G) < C otherwise
negative.

Here, M(G, ε) is the set of all test functions a with impulses SBa of maximal size ε on
G. The field I(G, a) is called the response of the test function a to the test domain G. If
the maximum response Iε(G) is smaller than a given cut off parameter then G is called
positive and contains the unknown domain D. We perform this test algorithm for various
test domains. The intersection of all positive test domains is an approximation on the
unknown domain D, i.e. for a family of test domains G̃ we calculate

Dapprox :=
⋂
G∈G̃

G positive

. (3.72)

In general, testing certain test domains and calculating the intersection of the positive
test domains is denoted as the no response test.

The following theorem is a first step toward a theoretical justification.

Theorem 3.11 If D ⊂ G then we have

lim
ε→0

Iε(G) = 0. (3.73)

Proof: Consider the function SBa which is harmonic in B. If ‖(SBa)|G‖C(G) ≤ ε and

D ⊂ G, then by the maximum-minimum principle follows that ‖(SBa)|D‖C(D) ≤ ε. Using
the definition of the response (3.70) and equation (3.68) we estimate

|I(G, a)| (3.70)
= |

∫
∂B

wa ds| (3.68)
= |

∫
∂D

(SBDa)t ds|

≤ ε

∫
∂D

|t| ds = ε|σB − σD|
∫

∂D

|ν × E| ds (3.74)

for all a ∈ M(G, ε). Since the electric field E is bounded, the response I(G, a) vanishes
for ε→ 0 and the statement follows from definition (3.71).

The reverse direction
D 6⊂ G =⇒ Iε(G) = ∞ (3.75)
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seems to be false. Anyway, it seems that we are able to determine a ’minimal’ set of D
by the no response test. We call attention to the fact that we want to characterize the
unknown domain D with only one pair of ’Cauchy data’ h = (Wj)|∂B, e = ν ×E|∂B. The
full ’Cauchy data’ seem to determine D.

At the moment some few results on the no reponse test applied to other inverse
problems are available. The authors of [LuPo] perform it for the obstacle scattering.
They are able to prove that their maximum response Iε(G) is unbounded if G ∩D = ∅.
Recently, first full convergence proofs are developed in [NPS] and [Po5]. Here, we cannot
give a full proof of convergence for the no response test applied to magnetic tomography,
it is left for future investigation. We represent the basic ideas and problems that arises
when we transfer the technique from the obstacle scattering. Indeed, our intension is to
give a numerical proof of concept for the no response test applied to magnetic tomography.

The convergence of the no response test is strongly linked to the extensibility of the
fields w and Wj, respectively. For an explaination lets consider the scalar potential u of
the electric field E instead of Wj (which can be seen as vector potential of E if we ignore
constant factors and the analytic term SOj). It fulfills

4u = 0 in D,B \D,
σD∂ν [D]u = σB∂ν [B

e]u on ∂D

and has boundary values on ∂B

u|∂B = f,
∂u

∂ν
= g (3.76)

with given g = ν · j = −2(I −K∗)−1 DIV (ν × h) and f determined by 4∂Bf = CURL e.
Now, we have the equivalent inverse problem: determine the unknown domain D (or
gain information about D) from the Cauchy data (3.76) without the knowledge of σD,
i.e. without the knowledge of the boundary condition. Then, the convergence proof of
Theorem 4.1 in [Po5], which is made for the inverse problem for the Helmholtz equation
with a sound hard obstacle (u|∂D = 0) from the Cauchy data u|∂B, ∂u/∂ν, can be adapted
with very few modification. This theorem expresses that the response I0(G) vanishes for
a test domain G,G ⊂ B if u can be analytically extended into B \ G. Moreover, if u
can not be analytically extended into B \ G, then Iε(G) is unbounded for each ε > 0.
We note that in this way - by reducing the magnetic tomography problem to the inverse
impedance problem - we get a realization of the no response test. Hence, an analogous
result should be available for the vector potential, i.e. if w can be analytically extended
into B \G then I0(G) = 0 else I0(G) = ∞.

Lets define the set of singular points of an analytic field v ∈ B \ G by the points
z ∈ B such that v cannot be analytically extended into a neighborhood of z. The set of
singular points might be empty. If it is not empty it is a subset of D. In this work we
test extensibility into the interior of some test domains G. Then, all singular points are
a subset of this test domains, i.e. we obtain some upper estimate for the set of singular
points of w. In some special cases, the set of singular points characterizes the unknonwn
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domain D as may be corners of the boundary ∂D. Therefore, in our numerical examples
the boundary ∂D have corners.

We base our realization upon the following (heuristic) argumentation. Consider for
z ∈ B \ G the point source approximation SBa(., z) ≈ Φ(., z) on G calculated by the
Tikhonov regularisation (3.57). If D ⊂ G then

∫
∂B

wa(., z) ds is an approximation of

w(z), but if D \ G 6= ∅ then there exists a point z ∈ D \ G. In this case, the numerical
study on the point source approximation in Subsection 3.2 has shown that the constructed
extension

∫
∂B

wa(., z) ds of the field w diverges in D.

For a test domain G, we restrict the test algorithm to functions a(., z(k)) approximating
the fields fkΦ(., z(k)) on G of point sources z(k) ∈ B \G. Thereby, the scalar fk is a scaling
factor such that

‖(SBa(., z
(k)))|G‖C(G) ≤ ε. (3.77)

For an effective test, we position sufficiently many points z(k), k = 1, . . . , K very close to
∂G, i.e. we position the points equally distributed on a parallel surface ∂Gh with h > 0.
Then we call the test domain G positive if

Iε(G) = sup
k=1,...,K

|I(G, a(., z(k)))| (3.78)

is smaller than a given treshold C ∈ R+ and negative otherwise.

3.3.2 Numerical Examples of the Shape Reconstruction

There are various strategies to perform the no response test, and the result as well as
the convergence rate depends on the used test domains and on the strategy. A-priori
information about the shape of the unknown domain or the location can be used for the
no response test directly. For example, if we know thatD is a cuboid then we should choose
cuboid-like test domains. In this subsection we present two strategies called Approach A
and Approach B. The second one is a global search strategy, it is more suitable to find
the location of the unknown domain. The first one is a local search strategy which can
be used to determine the shape of D. An iterative combination of both strategies is a
method which works pretty well even without a-priori information.

Algorithm 3.12 (No Response Test, Approach A) Let ε > 0.

• Choose some appropriate test domain G which is large enough, i.e. D ⊂ G + p for
some p ∈ R3. Choose a point p0, N normalized directions dn, and define the family
of admissible test domains

G̃ := {G+ p | G+ p ⊂ B, p = p0 + tdn, t ∈ R} , (3.79)

which are generated by the translation of G in all directions dn from p0.
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• Choose K points z(k) ∈ ∂Gh and calculate

a(., z(k)) := fk(αI + S∗BGSBG)−1S∗BGΦ(z(k), .), k = 1, . . . , K (3.80)

with a scaling factor fk ∈ R such that ‖(SBa(., z
(k)))|G‖C(G) ≤ ε.

• Choose a cut off parameter C > 0. For each G ∈ G̃ decide whether G is positive or
negative accordant to Algorithm 3.10.

• Evaluate

Dapprox :=
⋂
G∈G̃

G positive

. (3.81)

We illustrate the Approach A with the following example.

Figure 3.12: Scene 3

Let B be a ball of radius 2 centered at ori-
gin. Further, let D be a cube of length
0.5 centered at (−0.5, 0, 0)t. The domain
D is a conducting media with σD = 1000.
Thus, the electric field satisfies the trans-
mission boundary condition on ∂D. On
∂B, we have boundary data ν × E =
ν × ( grad Φ(x, p(1)) − grad Φ(x, p(2)) with
point sources at p(1) = (0, 0,−2.5)t and
p(2) = (0, 0, 2.5)t.

We test with the family of test domains

G̃(1) =

{
BR(z(k)) | R = 0.5, z(k) = (−1.5 +

k

60
, 0, 0)t, k = 1, . . . , 59

}
, (3.82)

G̃(2) =

{
QL(z(k)) | L = 0.7, z(k) = (−1.5 +

k

60
, 0, 0)t, k = 1, . . . , 59

}
(3.83)

consisting of 60 balls of radius R = 0.5 and of 60 cubes of length L = 0.7, respec-
tively, shiftet along the x-direction. The following figures show the logarithmic values of
Iε(BR(z(k))) and Iε(QL(z(k))) for xk = −1.5 + k/60.
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Figure 3.13: log10 Iε(BR(z(k))) Figure 3.14: log10 Iε(QL(z(k)))

Numerical details: In detail, we set ε = 0.001. For each ball, we have a boundary grid
of 4496 triangles. Let ck denote the center of each triangle, then we set z(k) = ck+0.001·νk

and obtain 4496 point sources at a distance of (round about) 0.001 from the boundary
∂G. Then, we solve the equation (3.80) for 4496 right hand sides. Afterwards we have
calculated the corresponding factors fk and the responses Iε(BR(z(k))) which are plotted
in Figure 3.13 for each xk on a logarithmic scale. The boundary grid of each cube consists
of 2014 triangles. In the same manner, we have calculated the responses Iε(QL(z(k)))
plotted in Figure 3.14.

Figure 3.15: Sampling method with spher-
ical test domains

Figure 3.16: Sampling method with cubic
test domains
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Although there is a small interval for the cut off parameter, the crucial point for the
sampling is the choice of an appropriate treshold. If we choose the parameter too small
no test domain would be positive, if we choose the parameter too large, the intersection
of positive test domains would be empty. Look at Figures 3.13 and 3.14 and choose cut
off parameters 10−2 to gain an approximation Dapprox which is represented in Figures 3.15
and 3.16, respectively.

Of course, we can not expect pretty good approximation in the case where we test with
spheres and the unknown domain D is a cuboid. The comparison of Figures 3.15 and 3.16
illustrates that a-priori information about the shape of an inclusion are a big advantage
for the reconstruction. Figure 3.16 shows that if we translate the test cubes defined in
(3.83) along the x-direction we are able to reconstruct the side surfaces at x = 0.25 and
x = 0.75 precisely.

Figure 3.17: Reconstructed domain (light blue) compared to the original (red)
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Next, we restart Approach A with the directions d1 = (0, 1, 0)t, d2 = (0, 0, 1)t. We
translate test cubes of length L = 0.7 along the y,z-directions. Together with the result
for the direction (1, 0, 0)t, we obtain an accurate reconstruction Dapprox of D. The Figure
3.17 illustrates the unknown domain D (red) compared to Dapprox (light blue).

We turn to the computational cost for the no response test. For every test domain
G, we solve the Tikhonov regularization equation (3.80). The point sources z(k) close to
∂G lead to different ride hand sides. Thus, we solve the equation once for 4496 ride hand
sides. The matrix which belongs to the operator S∗BGSBG has 3156 × 3156 entries. This
computation must be done for 3 directions and 60 domains per direction. Again we use
parallelized software algorithms, so the calculations with 20 computers takes about 20
minutes. If we halve the grid sizes on ∂B and ∂G we need 2 minutes for the calculation.

In general, we have no information about the position of D. Since Approach A is a
local method, we present the global method we call Approach B.

Algorithm 3.13 (No Response Test, Approach B) We look for the minimal radius
Rmin such that D ⊂ BRmin

(p0) by the following steps

• Choose some point p0 (if we carry out the Approach B the first time, we set p0 =
(0, 0, 0)t). Let R denote the maximal radius such that BR(p0) ⊂ B. Calculate the
response Iε(Br(p0)) for each Br(p0), r ∈ (0, R).

• Choose a cut off parameter C, then Rmin is the minimal radius such that C ≥
Iε(BRmin

(p0)).

The goal of the Approach B is to find the location of the unknown domain D. Developing
an iterative algorithm, we may restart Approch B with a new point p0. We explain the
method by the following example.

Figure 3.18: Scene 4

Again, let B be the ball with radius 2 and
center at origin. Furthermore, let D be
an orthogonal pyramid of height 0.5 with
a squared base of length 0.5. Two cor-
ners of the base are (

√
(2)/4, 0, 0)t and

(0,
√

(2)/4, 0)t. We have boundary condi-
tion of Neumann type on ∂D and boundary
data ν × E = ν × grad Φ(., p) with source
point p = (0, 0, 3)t on ∂B.
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Following the Approach B, we test the family of domains{
Brm(0) | rm =

m

30
,m = 1, . . . , 59

}
. (3.84)

Numerically, we build a boundary grid for every Brm(0), calculate the point sources z(k) as
menshioned above, the functions a(., z(k)) and the maximum response Iε(Brm(0)). These
values are shown in Figure 3.19 for every rm. Choose a cut off parameter 10−10 and the
corresponding radius R = 0.8. Figure 3.20 is a color-plot of the values

∫
∂B

w a(., z(k)) ds

plottet at the point sources z(k), i.e. we see that the point source approximation w̃(z(k))
blows up where z(k) ∈ D \G. This way we obtain a radius Rmin such that D ⊂ BRmin

(0).

Figure 3.19: log10I(Brm(0), a(., z(k)))
Figure 3.20:

∫
∂B

w a(., z(k)) ds on a parallel
surface of ∂BRmin

(0)

Now, there are different ways to find a new point p0 to restart the Approach B. We may
continue by covering B with balls of radius Rmin, evaluating the responses for each ball,
and sampling the positive domains. This sampling will lead to a test domain G, either G
is just a good approximation on D or we restart the Approach B with an appropriate p0

in G. A shorter way is the observation that the values
∫

∂B
w a(., z(k)) ds evaluated at z(k),

i.e. on the parallel surface of BRmin
(p0)) are largest near ∂D as Figure 3.20 illustrates.

We emphasize that this behavior is empirical, but it may decrease the computational cost
of the search strategy. For a mathematical justification we should proof the behavior of
point source approximation in future investigation. This behavior gives a hint in which
region we have to search more intensively. Then, we restart the Approach B with a point
p0 in this region.

The following Figure 3.21 is an approximation we have obtained by combining Ap-
proach B and Approach A. We see that the approximation domain Dapprox and the un-
known domain D coincide very well.
Numerical details: Firstly, we take the result of Figure 3.20 to restart the Approach
B with a new point p0 = (0.4, 0.4, 0.2)t. We have achieved a new minimal radius 0.6.
Next, we have choosen cubic test domains of length 1.2 and have translated it along x,y,z-
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Figure 3.21: Reconstructed domain (light blue) compared to the original (red)

direction from p0 according to Approach A. Evaluating the responses we have obtained
a new point p0 = (0.35, 0.35, 0.25). Finally, we restart the Approach A with the center
p0 and the direction vectors dn where dn are the normalized vectors of all possibilities of
(l,m, n)t, l,m, n = 0,±1,±

√
2. We note that the surface of the reconstruction domain

is not smooth which is a result of our way how we numerically build the intersection of
domains. For each domain we build up a volume mesh consisting of sufficiently many
points in the interior and at the surface. The intersection is the set of points belonging
to each of the domains. In general, this set has not a smooth surface.

Outline

The combination of the Approaches A and B is an iterative multistep method to locate the
unknown domain D. In particular, the method does not depend on the type of boundary
condition (we have excluded the case of a perfectly conducting inclusion). In contrast to
the no response test applied to obstacle scattering as in [Po3] and [LuPo], respectively, we
are not able to speed up the Approaches A and B when shifting the test domains. If one
succeeds in performing this speed up in magnetic tomography, the Approaches A and B
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are very efficient methods to detect an unknown inclusion. However, the numerical study
of this section has shown that the no response test works in principle. It is left for future
research to increase the performance, for instance by choosing a suitable fundamental
solution.

We have menshioned that the no response test applied to magnetic impedance to-
mography can be reduced to the no response test applied to impedance tomography by
considering the scalar potential of the electric field. In this section we have performed the
vectorial no response test to reconstruct an unknown inclusion D in a conducting media
B. Let Dapprox be the reconstructed domain and G be a test domain with Dapprox ⊂ G,
then we may apply the point source method with the test domain G to reconstruct the
interior magnetic field in B \G. Let W̃ denote the reconstructed magnetic field in B \G,
then by

j̃ = curlW̃ + SOj = curlW̃ + gradS(ν · j) (3.85)

we are able to reconstruct the current distribution in B \ G. We have established this
formula in (2.8) where we used that div j = 0 in B. The current flux ν ·j can be calculated
by

ν · j = −2(I − K∗)−1 DIV (ν × h) (3.86)

from the magnetic field h := (Wj)|∂B on the boundary ∂B, see Corollary 2.24. Summa-
rizing, this work proposes the full reconstruction, i.e. the reconstruction of the inclusion,
the interior magnetic field and the current distribution which causes the magnetic field
from the knowledge of the conductivity σB, the tangential component of the electric field
e := ν × E|∂B, and the magnetic field h := (Wj)|∂B on the boundary ∂B independently
from the nature of the inclusion.



Appendix A

Mathematical Background

A.1 Tikhonov Regularization

Reconstruction algorithms often lead to ill-posed equations of the form

Aφ = f (A.1)

with a compact operator A. To solve the equation (A.1) we require regularization schemes
as for instance Tikhonov regularization. For an introduction of ill-posed problems we refer
to [Kr],[CK1] and [EHN]. In this section, we sum up the relevant results.

The Tikhonov regularization scheme describes a stable method for solving equation
(A.1) in a Hilbert space setting, i.e. when A is a linear and compact operator A : X → Y
between Hilbert spacesX,Y . The background is given by the singular value decomposition
and Picard’s theorem. In preparation for the singular value decomposition we note that
an adjoint operator A∗ : Y → X exists in the dual space 〈X, Y 〉 based on the scalar
products in X, Y and A∗ is uniquely determined. Then, the operator A∗A : X → X is
self-adjoint and its eigenvalues form a countable set in R+ ∪ {0} accumulating at most at
zero. The non-negative square roots of the eigenvalues of A∗A are called singular values.

Theorem A.1 (Singular Value Decomposition) Let (µn)n∈N be the sequence of sin-
gular values of the linear compact operator A 6= 0 in decreasing order with repetitions
according to their multiplicity. Then, there exist orthonormal vectors (φn)n∈N in X and
(gn)n∈N in Y such that

Aφn = µngn, A∗gn = µnφn (A.2)

for all n ∈ N. For each φ ∈ X we have the singular value decomposition

φ =
∞∑

n=1

〈φ, φn〉Xφn +Qφ (A.3)

with the orthogonal projection operator Q : X → N(A) mapping X into the nullspace of
A and

Aφ =
∞∑

n=1

µn〈φ, φn〉Xgn. (A.4)
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Each system (µn, φn, gn) of this type is called a singular system of A.

Proof: For the proof we refer to Theorem 4.7 in [CK1].

Theorem A.2 (Picard) Let A : X → Y be a linear compact operator with singular
system (µn, φn, gn). Then, the equation (A.1) is solvable if and only if f ∈ N(A∗)⊥ and

∞∑
n=1

1

µ2
n

|〈f, gn〉Y |2 <∞. (A.5)

In this case a solution is given by

φ =
∞∑

n=1

1

µn

〈f, gn〉Y φn. (A.6)

Proof: For the proof we refer to Theorem 4.8 in [CK1].

Theorem A.3 (Tikhonov Regularization) Let A be a linear compact operator. Then,
for each α > 0 the operator αI + A∗A : X → X is bijective and has a bounded inverse.
We call φα := Rαf with the operator

Rα := (αI +A∗A)−1A∗ (A.7)

the Tikhonov solution of (A.1) with regularization parameter α. If A is injective and φ
satisfies Aφ = f , then we have

φα → φ, α→ 0. (A.8)

Proof: For the proof we refer to Theorem 4.13 in [CK1].

Picard’s theorem illustrates the ill-posedness. As noted above, the sequence (µn)n∈N of
singular values accumulates only at zero. Hence, the values 1/µn tend to infinity for
n→∞. Therefore, small errors in the data are strongly enlarged. This effect is damped
by regularization.
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A.2 Riesz-Fredholm Theory

We now give a brief survey on the theory of operator equations

(I − A)φ = f (A.9)

of the second kind with a linear compact operator A : X → X on a normed space X. We
define L := I − A. For the proofs of Riesz’ theorems we refer to [Kr], Chapter 3.

Theorem A.4 (First Riesz Theorem) The nullspace N(L) of the operator L is a
finite-dimensional subspace of X.

Theorem A.5 (Second Riesz Theorem) The range of the operator L is a closed lin-
ear subspace of X.

Theorem A.6 (Third Riesz Theorem) There exists an uniquely determined non-
negative integer r, called Riesz number, such that

{0} = N(L0)
⊂
6= N(L1)

⊂
6= · · ·

⊂
6= N(Lr) = N(Lr+1) = · · · , (A.10)

and

X = L0(X)
⊃
6= L1(X)

⊃
6= · · ·

⊂
6= Lr(X) = Lr+1(X) = · · · . (A.11)

Furthermore, we have the direct sum

X = N(Lr)⊕ Lr(X). (A.12)

Theorem A.7 The operator I − A : X → X with a linear compact operator A on a
normed space X is injective if and only if it is surjective. If I − A is injective, then the
inverse operator (I − A)−1 : X → X is bounded.

If the operator L is not injective and hence not surjective, the Fredholm alternative
provides a criteria for the solvability of equation (A.9). This is done in a context of
dual systems and adjoint operators. In particular, the Fredholm alternative is well suited
for integral operators in Hilbert spaces. A comprehensive study of dual systems and
Fredholm’s alternative can be found in [Kr], Chapter 4.

Theorem A.8 (First Fredholm Theorem) Let 〈X,Y 〉 be a dual system and A : X →
X,B : Y → Y be compact adjoint operators. Then, the nullspaces of I − A and I − B
have the same finite dimension.

Theorem A.9 (Second Fredholm Theorem) Let 〈X, Y 〉 be a dual system and A :
X → X,B : Y → Y be compact adjoint operators. Then

(I − A)(X) = {f ∈ X | 〈f, ψ〉 = 0, ∀ψ ∈ N(I − B)} (A.13)

and
(I − B)(X) = {g ∈ Y | 〈φ, g〉 = 0, ∀φ ∈ N(I − A)} . (A.14)
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In order to study integral operators of the form

(Aφ)(x) :=

∫
B

K(x, y)φ(y) dy (A.15)

we should investigate the mapping properties of A. Let B,D ⊂ R3 be two bounded
domains. In the case of a continuous kernel K(x, y), x ∈ D, y ∈ B we state

Theorem A.10 The integral operator A defined by (A.15) with continuous kernel K is
a linear compact mapping A : L2(B) 7→ L2(D).

Proof: With the aid of Cauchy-Schwarz-inequality we state

|(Aφ)(x)|2 ≤
∫
B

|K(x, y)|2 dy
∫
B

|φ(y)|2 dy

and

|(Aφ)(x)− (Aφ)(z)|2 ≤
∫
B

|K(x, y)−K(z, y)|2 dy
∫
B

|φ(y)|2 dy.

Let U ⊂ L2(B) be bounded, i.e. ‖φ‖L2(B) ≤ C for all φ ∈ U and a C ∈ R+. Then

|(Aφ)(x)|2 ≤ C2|B| max
x∈D,y∈B

|K(x, y)|2

for all x ∈ D and all φ ∈ U , i.e. A(U) is bounded in C(D). For every ε > 0 there exists
δ > 0 such that

|K(x, y)−K(z, y)| < ε

C
√
|B|

for all x, z ∈ D, y ∈ B with |x− z| < δ by the uniform continuity of K on D ×B. Then

|(Aφ)(x)− (Aφ)(z)|2 < ε2

for all x, z ∈ D with |x − z| < δ and all φ ∈ U . Thus, A(U) is equicontinuous in C(D).
Hence, A : L2(B) → C(D) is compact by the Arzelà-Ascoli theorem (see for instance
Theorem 1.18 in [Kr]). Finally, convergence in C(D) implies convergence in L2(D) and
A : L2(B) → L2(D) is compact, too.

Now, we extend our investigation to weakly singular integral kernels. An integral
kernel K is called weakly singular if K is continuous for all x ∈ D, y ∈ B, x 6= y and there
exist positive constants C ∈ R and α ∈ (0, 3] sucht that

|K(x, y)| ≤ C|x− y|α−3, x ∈ D, y ∈ B, x 6= y. (A.16)

It turns out that the statement of Theorem A.10 keeps valid for operators with weakly
singular kernels. For the proof we need Lax’ theorem.
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Theorem A.11 (Lax) Let X, Y be two normed spaces, both of which have a scalar prod-
uct 〈·, ·〉X resp. 〈·, ·〉Y . Assume that there exists a constant c ∈ R+ such that

|〈φ1, φ2〉X | ≤ c‖φ1‖‖φ2‖ (A.17)

for all φ1, φ2 ∈ X. Let A : X → Y,B : Y → X be bounded linear operators satisfying

〈Aφ, ψ〉Y = 〈φ,Bψ〉X (A.18)

for all φ ∈ X and ψ ∈ Y . Then A is bounded with respect to the norms ‖.‖s induced by
the scalar products and

‖A‖2
s ≤ ‖A‖‖B‖. (A.19)

Proof: The proof can be found for instance in [Kr], Theorem 4.11.

Theorem A.12 The integral operator A with weakly singular kernel is a linear compact
map A : L2(B) → L2(D).

Proof: The proof of compactness of A : C(B) → C(D) in Theorem 2.22 of [Kr] also
works for two domains B,D. Since C(D) is a dense subset of L2(D), there exists one
and only one extension operator Ã in L(L2(B), L2(D)) with Aφ = Ãφ,∀φ ∈ C(B). We
also denote the extension of A by A instead by Ã. Now, we use Lax’ theorem with
X = L2(B), Y = L2(D). It can be seen that integral operators with weakly singular
kernels are compact in the completion of C(B) with respect to the scalar product, i.e. in
L2(B).

Theorem A.13 If ∂B ∈ C1, then the integral operator A with continuous or weakly
singular kernel is a linear compact map A : L2(∂B) → L2(∂B).

Proof: The theorem is shown for A : C(B) → C(B) in [Kr], Theorem 2.23. The
extension to L2(B) can be made similiar the proof of Theorem A.12.
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A.3 Boundary Integral Representation of Harmonic

Functions

Here, we give a detailed overview how to solve the classical boundary value problems of
Laplace’s equation

BVP 14 (Interior Dirichlet problem for the classical Laplace equation) Let
∂B ∈ C2. For some given function f ∈ L2(∂B)

find u ∈ C2(B) such

{
4u = 0 in B,
u = f on ∂B.

(A.20)

BVP 15 (Interior Neumann problem for the classical Laplace equation) Let
∂B ∈ C2. For some given function g ∈ L2

◦(∂B)

find u ∈ C2(B) such

{
4u = 0 in B,

∂u
∂ν

= g on ∂B.
(A.21)

BVP 16 (Exterior Dirichlet problem for the classical Laplace equation) Let
∂B ∈ C2. For some given function f ∈ L2(∂B)

find u ∈ C2(Be) such


4u = 0 in Be,
u = f on ∂B,

u(x) → 0 |x| → ∞.
(A.22)

BVP 17 (Exterior Neumann problem for the classical Laplace equation) Let
∂B ∈ C2. For some given function g ∈ L2(∂B)

find u ∈ C2(Be) such


4u = 0 in Be,

∂u
∂ν

= g on ∂B,
u(x) → 0 |x| → ∞.

(A.23)

Their weak formulation has been treated in Subsection 1.4.2. We represent the classical
solutions in the shape of single and double layer potentials, respectively. With the aid of
the jump relations we may adapt the layer potentials to the different boundary conditions.
The disadvantage of this boundary integral method is the requirement for more regularity
of ∂B.

Theorem A.14 Let B be a bounded simply-connected Lipschitz domain and φ ∈ H− 1
2 (∂B),

ψ ∈ H 1
2 (∂B), then we have

γ0[B
e]Sφ− γ0[B]Sφ = 0, ∂ν [B

e]Sφ− ∂ν [B]Sφ = −φ, (A.24)

γ0[B
e]Dψ − γ0[B]Dψ = ψ, ∂ν [B

e]Dψ − ∂ν [B]Dψ = 0. (A.25)
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Proof: The general jump relations (A.24),(A.25) can be found in [Co], Lemma 4.1.

Both jump relations can be transformed into an equation of second kind. Setting T φ :=
∂ν [B

e]Dψ + ∂ν [B]Dψ we obtain

γ0[B
±]Dψ =

1

2
(T φ± φ), (A.26)

and a similar equation for the single layer potential. Here, we used the syntax B+ for the
exterior Be and B− for the interior. The crucial point is that we want to reduce (A.26)
to a manageable integral equation of second kind where we can apply the comfortable
Riesz theory. In this section, we focus on the Dirichlet and Neumann problems with L2

boundary values on the C2 boundary ∂B. The jump relations of Theorem A.14 do not
change which can also be seen by the following theorem.

Theorem A.15 For the bounded domain B with ∂B ∈ C2 we have

γ0[B
±]Dψ =

1

2
(Kψ ± ψ) (A.27)

with the operator K : L2(∂B) → L2(∂B) defined by

(Kφ)(x) := 2

∫
∂B

∂Φ(x, y)

∂ν(y)
φ(y) ds(y), x ∈ ∂B. (A.28)

Furthermore, we have

∂ν [B
±]Sφ =

1

2
(K∗φ∓ φ) (A.29)

with the adjoint operator K∗ : L2(∂B) → L2(∂B) of K defined by

(K∗φ)(x) := 2

∫
∂B

∂Φ(x, y)

∂ν(x)
φ(y) ds(y), x ∈ ∂B. (A.30)

Proof: A detailed treatment of the jump relations can be found in [Ker].

Lemma A.16 Let ∂B ∈ C2, the linear integral operators K,K∗ : L2(∂B) → L2(∂B) are
compact operators.

Proof: The operators K and K∗ as defined in (A.28) and (A.30) have weakly singular
kernels. Therefore, the operators K,K∗ : L2(∂B) → L2(∂B) are compact operators in
view of Theorem A.13.

The following theorems reduces the question for the existence of solutions of the differ-
ent boundary value problems to the question for the solvability of corresponding integral
equations of second kind.
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Theorem A.17 The double layer potential Dψ with density ψ ∈ L2(∂B) solves the in-
terior Dirichlet problem for Laplace’s equation with boundary data g ∈ L2(∂B) provided
that ψ is a solution of

(I − K)ψ = −2g. (A.31)

Proof: This is a consequence of Theorem A.15.

Theorem A.18 The modified double layer potential D̃ψ defined by

(D̃ψ)(x) :=

∫
∂B

ψ(y)

{
∂Φ(x, y)

∂ν(y)
+ Φ(x, 0)

}
ds(y), x ∈ Be (A.32)

with density ψ ∈ L2(∂B) solves the exterior Dirichlet problem for Laplace’s equation with
boundary data g ∈ L2(∂B) provided that ψ is a solution of

(I + K̃)ψ = 2g, (A.33)

where

(K̃ψ)(x) := 2

∫
∂B

ψ(y)

{
∂Φ(x, y)

∂ν(y)
+ Φ(x, 0)

}
ds(y), x ∈ ∂B. (A.34)

Here, we assume that the origin is contained in B.

Proof: From (A.27) we deduce

2γ0[B
e]D̃ψ = 2γ0[B

e]Dψ + 2

∫
∂B

Φ(x, 0)ψ(y) ds(y) = (I + K̃)ψ (A.35)

and the statement is evident. Observe that the modified double layer potential has the
required behavior at infinity.

Theorem A.19 The single layer potential Sφ with a density φ ∈ L2(∂B) solves the
interior Neumann problem for Laplace’s equation with boundary data g ∈ L2(∂B) provided
that φ is a solution of

(I +K∗)φ = 2g. (A.36)

Proof: This is consequence of Theorem A.15.

Theorem A.20 The single layer potential Sφ with a density φ ∈ L2(∂B) solves the
exterior Neumann problem for Laplace’s equation with boundary data g ∈ L2(∂B) provided
that φ is a solution of

(I − K∗)φ = −2g. (A.37)
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Proof: This follows from Theorem A.15.

Now, we have to investigate the different integral equation of second kind. Since the
operators K,K∗ are compact we are able to apply Riesz-Fredholm theory. Therefore,
the nullspaces N(I ± K) as well as N(I ± K) have finite dimension. The next theorem
characterizes it more precisely.

Theorem A.21 Let ∂B ∈ C2. The nullspaces of I ± K are given by

N(I − K) = {0}, N(I +K) = span{1}. (A.38)

Moreover, the nullspaces N(I ± K∗) are given by

N(I − K∗) = {0}, N(I +K∗) = span{φB}, (A.39)

with a normalized φB ∈ L2(∂B).

Proof: We start to prove the first statement. Let ψ ∈ N(I − K), then Dψ solves the
interior Dirichlet problem with homogeneous boundary condition (see Theorem A.17).
This problem has only the trivial solution, thus Dψ = 0 in B. Hence, ∂ν [B

−]Dψ = 0.
From the jump relation (A.25) we have ∂ν [B

+]Dψ = ∂ν [B
−]Dψ = 0. Now, Dψ is a

solution of the exterior Neumann problem in Be with vanishing boundary data. The
uniqueness of this problem implies Dψ = 0 in Be. The jump relation (A.25) leads to
ψ = γ0[B

e]Dψ− γ0[B]Dψ = 0. The statement N(I −K∗) = {0} follows from Fredholm’s
alternative.

Let ψ ∈ N(I +K), then Dψ is harmonic in Be, vanishes at infinity and has boundary
values γ0[B

e]Dψ = 0 by the jump relation (A.27). That means, Dψ solves the exterior
Dirichlet problem with homogeneous boundary condition. Therefore, Dψ = 0 in Be

since this problem has at most one solution. Then γν [B
e]Dψ = 0 and γν [B]Dψ = 0

by the jump relation (A.25). Now, Dψ is a solution of the interior Neumann problem
in B with homogeneous boundary values. A solution to this problem is unique up to
a constant, therefore Dψ ≡ c in B for a c ∈ R. Now, ψ = γ0[B

e]ψ − γ0[B]ψ = −c.
Thus, we have proven N(I + K) ⊂ span{1}. Reversely, the calculation (1.135) yields
D1 = −1 in B and D1 = 0 in Be. Using the jump relation (A.27) once more we obtain
K1 = γ0[B

+]D1 + γ0[B
−]D1 = −1. Therefore, (I + K)1 = 0, and N(I + K) = span{1}

is proven. The Fredholm alternative implies that N(I + K∗) has dimension one, thus
N(I +K∗) = {φB} with a density φB ∈ L2(∂B) which can be normalized.

In a brief review we show that the modified double layer potential provides a solution
to the exterior Dirichlet problem for every boundary data g ∈ L2(∂B). Let ψ ∈ L2(∂B) be
a solution of (I + K̃)ψ = 0, then D̃ψ solves the exterior Dirichlet problem with vanishing
boundary values on ∂B (see Theorem A.18). From the uniqueness of this problem D̃ψ
must be zero in Be, especially ∂ν [B

e]D̃ψ = 0. With the aid of grad Φ(x, y) = 1
4π

x−y
|x−y|−3
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we deduce the asymptotic

|x|(D̃ψ)(x) =

∫
∂B

ψ ds ·
(

1 +O

(
1

|x|

))
, |x| → ∞. (A.40)

From this behavior we get
∫

∂B
ψ ds = 0 since D̃ψ = 0 in Be. By the jump relation (A.25)

we obtain
∂ν [B

e]D̃ψ − ∂ν [B]D̃ψ = ∂ν [B
e]Dψ − ∂ν [B]Dψ = 0. (A.41)

Inserting ∂ν [B
e]D̃ψ = 0 we have ∂ν [B]D̃ψ = 0. Now, D̃ψ solves the homogeneous interior

Neumann problem, and must be constant in B. Using the jump relation (A.25) once more
we obtain

γ0[B
e]D̃ψ − γ0[B]D̃ψ = γ0[B

e]Dψ − γ0[B]Dψ = ψ, (A.42)

and ψ must be constant. Now
∫

∂B
ψ ds = 0 implies ψ = 0, and we have proven

Corollary A.22 The nullspace of operator I + K̃ is given by

N(I + K̃) = {0}. (A.43)

Theorem A.23
The interior Dirichlet problem (A.20) is uniquely solvable for each right hand side f ∈
L2(∂B).
The interior Neumann problem (A.21) with boundary values g ∈ L2(∂B) has a solution
uniquely determined up to a constant if and only if

∫
∂B
g ds = 0.

The exterior Dirichlet problem (A.22) is uniquely solvable for each right hand side f ∈
L2(∂B).
The exterior Neumann problem (A.23) with boundary values g ∈ L2(∂B) has an unique
solution.

Proof: Due to N(I−K) = {0} the integral equation (I−K)ψ = −2g with the compact
operator K is uniquely solvable for each right hand side, i.e. Dψ is a solution of the
interior Dirichlet problem. Since Theorem 1.28 shows the uniqueness for boundary values
g ∈ H1/2(∂B) we have to modify the proof of uniqueness. We use Green’s first identity
in the sence of ∫

∂B

u4v + gradu grad v dx = 〈γ0[B]u∂ν [B]v, 1〉. (A.44)

Now, let u ∈ H1
4(B) be a solution of the homogeneous Dirichlet problem, then (A.44)

with v = u results in
∫

B
| gradu|2 dx = 0. Hence, gradu must be constant and this

constant is zero according to the homogeneous boundary condition.
For the compact operator K∗ we have proven N(I + K∗) = span{φB}. Fredholm’s

alternative implies

(I +K∗)(L2(∂B)) =
{
f ∈ L2(∂B) | 〈f, φ〉 = 0, ∀φ ∈ N(I +K)

}
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i.e. (I +K∗)φ = 2g is solvable if and only if
∫

∂B
g ds = 0. The necessity of this condition

is a consequence of Theorem 1.24. We decompose L2(∂B) with respect to the nullspace
of operator I +K∗ and introduce

L2
�(∂B) := N(I +K∗)⊥ =

ϕ ∈ L2(∂B) |
∫
∂B

ϕφB ds = 0

 . (A.45)

Altogether, the operator I + K∗ : L2
�(∂B) → L2

◦(∂B) is injective, and thus, bijective.
From Theorem A.19, the function Sφ with φ = 2(I + K∗)−1g ∈ L2

�(∂B) is a solution
of the interior Neumann problem. Theorem 1.29 shows that this solution is uniquely
determined up to a constant.

We have shown N(I + K̃) = {0}. From the fact that K̃ − K has a continuous kernel,
we observe that K̃ is a compact operator. Then (I + K̃)ψ = 2g has an unique solution ψ
for each g, that means D̃ψ is a solution of the exterior Dirichlet problem which vanishes
at infinity. Theorem 1.107 together with Remark 1.32 shows that this solution is uniquely
determined.

The exterior Neumann problem with boundary data g ∈ L2(∂B) admits a solution Sφ
with φ = −2(I − K∗)−1g. Since N(I − K∗) = {0} the operator (I − K∗)−1 exists and is
bounded. Finally, Theorem 1.31 shows its uniqueness.
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A.4 Boundary Integral Representation of Harmonic

Fields

In this section we want to represent the classical solution of boundary value problems
for harmonic fields and fields with harmonic components in terms of boundary integrals.
First, we consider harmonic fields with given normal components. Here, we use the results
of the previous section for the the scalar potential of an harmonic field. Next, we study
divergence-free fields with given tangential components and its vector potentials. We
are able to give a representation for harmonic fields as well as for fields with harmonic
components. Again, we require a C2 boundary ∂B.

BVP 18 (Interior normal problem for classical harmonic fields) Let ∂B ∈ C2.
For some given function g ∈ L2

◦(∂B)

find u ∈ C1(B) such


curlu = 0 in B,
div u = 0 in B,
ν · u = g on ∂B.

(A.46)

BVP 19 (Exterior normal problem for classical harmonic fields) Let ∂B ∈ C2.
For some given function g ∈ L2(∂B)

find u ∈ C1(Be) such


curlu = 0 in Be,
div u = 0 in Be,
ν · u = g on ∂B,
u(x) → 0 |x| → ∞.

(A.47)

BVP 20 (Interior tangential problem for classical harmonic fields) Let ∂B ∈
C2. For given g ∈ L2

t, DIV =0(∂B)

find u ∈ C1(B) such


curlu = 0 in B,
div u = 0 in B,
ν × u = g on ∂B.

(A.48)

BVP 21 (classical Interior tangential problem for the reduced Stokes equa-
tion) Let ∂B ∈ C2. For some given field g ∈ L2

t, DIV (∂B)

find u ∈ C2(B) such


4u = 0 in B,

div u = 0 in B,
ν × u = g on ∂B.

(A.49)
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BVP 22 (Exterior tangential problem for classical harmonic fields) Let ∂B ∈
C2. For given g ∈ L2

t, DIV =0(∂B)

find u ∈ C1(Be) such



curlu = 0 in Be,
div u = 0 in Be,
ν × u = g on ∂B,
u(x) → 0 |x| → ∞,∫

∂B

u ds = 0.

(A.50)

BVP 23 (classical Exterior tangential problem for the reduced Stokes equa-
tion) Let ∂B ∈ C2. For some given field g ∈ L2

t, DIV (∂B)

find u ∈ C2(Be) such



4u = 0 in Be,
div u = 0 in Be,
ν × u = g on ∂B
u(x) → 0 |x| → ∞,∫

∂B

u ds = 0.

(A.51)

The solutions of the interior and exterior normal problems (A.46) and (A.47) can be
represented as gradSφ which is the statement of the following theorem.

Theorem A.24 The field gradSφ solves the interior normal problem for harmonic fields
with boundary values g ∈ L2

◦(∂B) if φ is a solution of

(I +K∗)φ = 2g. (A.52)

Moreover, the field gradSφ solves the exterior normal problem for harmonic fields with
boundary values g ∈ L2(∂B) if φ is a solution of

(I − K∗)φ = −2g. (A.53)

Proof: The field gradSφ is a harmonic field in B and in Be and vanishes at infinity.
Then the boundary conditions follow from the jump relations (A.29).

Theorem A.25
The interior normal problem (A.46) is uniquely solvable for each right hand side g ∈
L2
◦(∂B).

The exterior normal problem (A.47) is uniquely solvable for each right hand side g ∈
L2(∂B).

Proof: In the proof of Theorem A.23 we have shown that I +K∗ : L2
�(∂B) → L2

◦(∂B)
is a bijective operator with bounded inverse. Therefore, the equation (I + K∗)φ = 2g
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has an unique solution in L2
�(∂B) for each g ∈ L2

◦(∂B), and gradSφ solves the interior
normal problem. The uniqueness is shown by Theorem 1.29.

Since N(I −K∗) = {0} the equation (I −K∗)φ = −2g has an unique solution for each
g ∈ L2(∂B) and gradSφ solves the exterior normal problem. The uniqueness is proven
by Theorem 1.31.

Now, we turn to the tangential problems of the reduced Stokes equation, i.e. we con-
sider a field u that satisfies

4u = 0, div u = 0 (A.54)

in B or Be and fulfills the boundary condition ν × u = g for a given tangential field g.
Usually, the Stokes equation for a vector field u and a scalar function p is given by

4u + grad p = 0, div u = 0. (A.55)

For the solution of the tangential problems we make use of the vector potentials curl ~Sa.
We present the jump relations of the vector potentials and afterwards we characterize the
boundary integral operator M. With this operator we establish an integral equation of
second order similar to those we have studied in the previous section.

Theorem A.26 Let ∂B ∈ C2. For a ∈ L2
t (∂B), the vector potential ~Sa has boundary

values

div ~S±(a) =

∫
∂B

grad Φ(., y)a(y) ds∓ 1

2
ν · a, (A.56)

curl ~S±(a) =

∫
∂B

grad Φ(., y)× a(y) ds∓ 1

2
ν × a (A.57)

where the subscript + denotes the boundary values from the exterior Be and − from the
interior B.

Proof: The classical version of the boundary values, i.e. in a setting of

C0,α
t, DIV (∂B) =

{
v ∈ C0,α

t (∂B) | DIV v ∈ C0,α(∂B)
}

(A.58)

can be found in [CK1], Theorem 6.12. For the extension to L2
t (∂B) we refer to [Hä].

Corollary A.27 Let ∂B ∈ C2. For a ∈ L2
t (∂B), the vector potential ~Sa has boundary

values

2γ×[B±] curl ~Sa = (M±I)a, (A.59)

2γT[B±] curl ~SRa = −(M∗ ∓ I)a (A.60)

with the operator M defined by

(Ma)(x) := 2

∫
∂B

ν(x)× curl x{Φ(x, y)a(y)} ds(y), x ∈ ∂B (A.61)
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and the operator R defined by
Ra := ν × a. (A.62)

Proof: The jump relation (A.59) can be concluded from (A.57). For the jump relation
(A.60) we apply (A.59) to the tangential field Ra and obtain

2γ×[B±] curl ~SRa = (M±I)Ra.

Now, we apply the operator R and use the relations

RRa = −a, (A.63)

RMR = M∗, (A.64)

see for instance [CK1], page171.

With the aid of the vector potentials curl ~Sb we observe

curl curl curl ~Sb = curl (−4+ grad div ) ~Sb = 0 div curl ~Sb = 0. (A.65)

Together with the jump relation we are able to adapt curl ~Sb such that the vector po-
tential is a solution of the interior and exterior tangential problems, respectively. To
accommodate this, we recall the surface operator GRAD , DIV , CURL and the spaces
L2

t, DIV (∂B) and L2
t, CURL (∂B) from Subsection 2.2.3 and study the mapping properties of

the operator M.

Lemma A.28 Let ∂B ∈ C2. The linear integral operator M is a compact operator on
L2

t (∂B), L2
t, DIV (∂B) as well as on L2

t, DIV =0(∂B).

Proof: Since its kernel is weakly singular, M is a compact operator from L2
t (∂B) into

itself. Following [Hä], M is also a compact operator on L2
t, DIV (∂B). The statement for

L2
t, DIV =0(∂B) follows from the relation (see [CK1], page 169)

DIVMa = −K∗ DIV a (A.66)

where K∗ is the adjoint operator of the double layer potential K.

Theorem A.29 I +M is an one-to-one mapping on L2
t (∂B),L2

t, DIV (∂B) as well as on
L2

t, DIV =0(∂B) whereas I+M∗ is an one-to-one mapping on L2
t (∂B),L2

t, CURL (∂B) as well
as on L2

t, CURL=0(∂B).

Proof: First, we prove the statements of I + M. Theorem 5.4 of [CK2] shows the
injectivity of I+M as a mapping from C0,α

t, DIV (∂B) into itself. Together with Fredholm’s
alternative it can be shown that the nullspace with respect to L2

t (∂B) coincides with the
nullspace with respect to C0,α

t, DIV (∂B) (for the technique see for instance [CK1], page 59).
The relation

DIV (I +M)a = (I − K∗) DIV a (A.67)
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and the mapping property of K∗ : L2(∂B) → L2(∂B) imply the bijectivity on L2
t, DIV (∂B).

Since the nullspace of I−K∗ is trivial (see Theroem A.21), I+M is also a bijectiv operator
on L2

t, DIV =0(∂B).
The Fredholm alternative implies that I +M∗ is also bijective in the dual spaces, i.e.

in L2
t (∂B) and L2

t, DIV (∂B) where the bilinear form is induced by

〈Ra,b〉L2
t, CURL (∂B) = 〈a,−Rb〉L2

t, DIV (∂B). (A.68)

Now, the bijectivity on L2
t, CURL=0(∂B) follows from

CURL (I +M∗)a = CURL (I +RMR)a = CURL a− DIVMRa

= CURL a +K∗ DIVRa = (I − K∗) CURL a.

and N(I − K∗) = {0}.

Theorem A.30 I −M is an one-to-one mapping on L2
t (∂B),L2

t, DIV (∂B) as well as on
L2

t, DIV =0(∂B). I −M∗ is an one-to-one mappings on L2
t (∂B),L2

t, CURL (∂B) as well as on
L2

t, CURL=0(∂B).

Proof: First, we turn to the statement of I −M. Consider a g ∈ L2
t, CURL (∂B), then

a := (I +M)−1Rg ∈ L2
t, DIV (∂B). For the tangential field b = −Ra we observe

(I −M∗)b = −R(I +M)Rb = −R(I +M)(I +M)−1Rg = g, (A.69)

i.e. the mapping I−M∗ is surjective. The Riesz’ theory implies that I−M∗ is bijective on
L2

t, CURL (∂B). The argumentation is also valid for g ∈ L2
t (∂B) and for g ∈ L2

t, CURL=0(∂B),
therefore I −M∗ is bijective on L2

t (∂B) and on L2
t, CURL=0(∂B).

For the proof of the statement of I −M we use a similar technique. Starting from
some g ∈ L2

t, DIV (∂B), we define a := (I + M∗)−1Rg, then b := −Ra ∈ L2
t, DIV (∂B)

fulfills (I − M)b = g. Hence, I − M is seen to be surjective, and thus, bijective
on g ∈ L2

t, DIV (∂B). This proof also works to verify the bijectivity on L2
t (∂B) and on

L2
t, DIV =0(∂B).

Now, we are prepared to solve the reduced Stokes problems.

Corollary A.31 The field curl ~Sa solves the problem (A.49) with boundary data g ∈
L2

t, DIV (∂B) where a is the unique solution of

(I −M)a = −2g. (A.70)

Furthermore, the field curl ~Sa solves the problem (A.51) with boundary data g ∈ L2
t, DIV (∂B)

where a is the unique solution of

(I +M)a = 2g. (A.71)
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Proof: Since N(I − M) = {0} and M compact, the equation (I − M)a = −2g is

solvable for each g ∈ L2
t, DIV (∂B). Then curl ~Sa fulfills the boundary condition (see jump

relation from Theorem A.30) and the first and second condition of the interior tangential
proble, see (A.65).

The nullspace of I + M is trivial, i.e. (I + M)a = −2g is solvable for each g ∈
L2

t, DIV (∂B). The jump relation imply that curl ~Sa fulfills the boundary condition of
the exterior tangential problem. Moreover, the equation (A.65) shows that the first and
second condition are statisfied.

With a small modification we are able to solve the tangential problems for classical har-
monic fields.

Corollary A.32 The field curl ~Sa solves the interior problem (A.48) with boundary data
g ∈ L2

t, DIV =0(∂B) where a is the unique solution of (I −M)a = −2g.
Furthermore, it is a solution of the exterior problem (A.50) with boundary data g ∈
L2

t, DIV =0(∂B) where a is the unique solution of (I +M)a = 2g.

Proof: In a view of Corollary A.31 it remains to proove that curl ~S is curl-free. Theorem
A.30 implies that for the solution of (I −M)a = −2g with DIV g = 0 holds DIV a = 0.
With the relation

div ~Sa = ~S DIV a (A.72)

we observe
curl curl ~Sa = (−4+ grad div ) ~Sa = grad ~S DIV a = 0.

Analogously, Theorem A.29 implies DIV a = 0 for the solution of (I +M)a = 2g with

DIV g = 0, and curl ~Sa is curl-free.
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A.5 Formulas of Vector Analysis

a twice continuously differentiable vector field,

curl curl a = grad div a−4a (A.73)

a continuously differentiable function, b continuously differentiable vector field

div (ab) = b · grad a+ a div b (A.74)

a ∈ H1(B), b ∈ Hdiv(B)∫
∂B

a ν · b ds =

∫
B

b · grad a+ a div b dx (A.75)

a, b continuously differentiable vector fields

div (a× b) = b curl a− a curlb (A.76)

a ∈ Hcurl(B), b ∈ H1(B)∫
∂B

b · (ν × a) ds =

∫
B

b curl a− a curlb dx (A.77)

a continuously differentiable function,b continuously differentiable vector field

curl (ab) = a curlb− b× grad a (A.78)

a ∈ H1(B), b ∈ Hcurl(B)∫
∂B

aν × b ds =

∫
B

a curlb− b× grad a dx (A.79)

a, b continuously differentiable vector fields

curl (a× b) = (a · grad )b− (b · grad )a + a div b− b div a (A.80)

a continuously differentiable vector field, then the formulas

div {Φ(x, y)a(y)} = grad Φ(x, y) · a(y) + Φ(x, y) div a(y) (A.81)

curl {Φ(x, y)a(y)} = grad Φ(x, y)× a(y) + Φ(x, y) curl a(y) (A.82)

are true for both differentiation with respect to x and y.

div x{Φ(x, y)a(y)} = − div y{Φ(x, y)a(y)}+ Φ(x, y) div ya(y) (A.83)

curl x{Φ(x, y)a(y)} = − curl y{Φ(x, y)a(y)}+ Φ(x, y) curl ya(y) (A.84)
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