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Abstract. We provide a survey about the status and open problems for magnetic tomography
for fuel cells. A number of papers are reviewed which develop the subject including theory
of simulation and inversion, uniqueness questions, reconstruction algorithms and real data
applications. In particular, this work describes a number of yet unpublished results and
experiments. Our goal is to provide a complete picture of the status-quo of magnetic tomography
for fuel cells which includes the recent scientific and engineering results as well as an introduction
into open questions and upcoming developments. We believe that magnetic tomography as an
ill-posed and non-unique inverse source problem reflects key problems of many applied inverse
problems. In particular, the challenges of real data applications reflect the challenges of the
area of inverse problems as a whole and provide inside into generic problems of this important
area of applied mathematics.

1. Introduction
Magnetic tomography is concerned with the reconstruction of currents from their magnetic
fields. Current reconstructions are of importance for several practical applications. In medicine
the magnetic fields around the brain reflect the neural activity in different areas of the animal
or human being. The location of source distributions is important for planning of surgery and
as a general means of diagnosis. Industrial applications use magnetic fields in such diverse areas
as steal production and fuel cells. For the fuel cell application the reconstruction of current
densities is needed for the development, monitoring and testing of the chemical and physical
processes in fuel cells.

The basic setting of magnetic tomography for fuel cells has been pioneered in a series of papers
[10] on numerical simulations with the Tikhonov regularization for reconstruction, [11] on the
underlying anisotropic forward problem via the finite integration technique, [5] on the uniqueness
question for current reconstructions in full stacks and [6] on the full applied measurement method
including the design of a machine for such measurements. In contrast to the medical applications,
the currents in fuel cells do not have internal sources. This leads to an underlying partial
differential equations without source terms on the right-hand side. It strongly influences the
uniqueness results and reconstruction techniques.

Fuel cells are chemical devices which transform chemical energy into electrical energy. The
basic principle for a hydrogen-oxygen fuel cell is shown in Figure 1. At the anode (+) hydrogen
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Figure 1. We show the principle of a fuel cell. Hydrogen and oxygen are fueled into different
layers. They react, creating a potential which drives electric currents through the wires.

is inserted. Air or oxygen, respectively, is fueled at the cathode (-). They are separated by
a semi-permeable membrane for protons with some catalysor (for example platin). Protons of
hydrogen move to cathode through the membrane. This creates a potential which then drives
electrones through wire and power some motor or light. Hydrogen and oxygen react at cathode
to water and heat. Usually fuel cells need some heating and cooling technology.

We consider some fuel cell or fuel cell stack, respectively, as it can be seen in Figure 2. For our
practical application Ω will be a domain which is a union of several cuboids. These cuboids are
built by the end plates of fuel cells and the different layers of the fuel cell. For the mathematical
modelling of the problem we assume Ω to be a Lipschitz domain in R3, which includes the
above cases. We will choose our coordinate system such that the endplates are parallel to the
x1− x2 plane, x2 is pointing upwards, and the current flowing through the active area moves in
x3-direction.

As described above, the currents are generated by chemical processes in the cell. There are
two wires attached to the endplates, which carry the current to some consumer, possibly a
vehicle or some immobile system. From the setting we know the current outside of the cell and,
in particular, we know the inflowing and outflowing current on the boundary of the domain Ω.
This leads to the boundary condition

ν · j(y) = g, y ∈ ∂Ω (1)

with some given function g on ∂Ω. We will describe a macroscopic modell to calculate the
currents in the cell in Section 2. Currents are calculated on the basis of Ohm’s law and the
static Maxwell equations when some effective conductivity σ is provided.

Let us now assume that we know the current distribution j in the domain Ω ⊂ R3. We need
to model the magnetic field from which we target to reconstruct the current density j. Magnetic
fields H of currents j are calculated via the Biot-Savart integral operator, defined by

(Wj)(x) :=
1
4π

∫

Ω

j(y)× (x− y)
|x− y|3 dy, x ∈ R3 (2)

for j ∈ L2(Ω). For details about this representation and its relation to Maxwell’s equations we
refer to [10]. The problem of magnetic tomography now reduces to solving the equation

Wj = Hmeas on ∂G, (3)
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Figure 2. We show a fuel cell (left) and fuel cell stack (right) in the laboratory. The magnetic
tomograph is seen in the left image with two magnetic sensors. With courtesy of TomoScience
GbR, Wolfsburg / Research Center Jülich, Germany

where G is some domain with sufficiently smooth boundary such that Ω ⊂ G and Hmeas denotes
some measured magnetic field on ∂G. Here, we need to supply appropriate conditions on the
current densities j under consideration via the spaces on Ω and ∂G.

We will study the simulation of currents in Section 2. The uniquenss and non-uniqueness
of current reconstructions is discussed in Section 3. Then, we present different approaches to
current and obstacle reconstruction from measured magnetic fields in Section 4. In particular,
we will describe a general Tikhonov regularization approach in Subsection 4.1, the point source
method for field reconstructions in Subsection 4.2 and the no-response test in Subsection 4.3.
Real data reconstructions will be provided in Section 5. We discuss some open problems at the
end of each section.

2. Simulation of currents in fuel cells
The simulation of current densities in fuel cells is an important and difficult problem of current
research in engineering. Via finite element tools a full community is involved in flow simulations
within fuel cells.1 However, so far it has not been possible to generate reliable and tested
simulations which prove to reflect the real situation within the modern technological devices.
One central problem here is the validation of models and calculations. The fuel cell is a quite
sensitive and delicate technical system and it is difficult to measure inside the cell without
changing the whole setting and with the setting the flow and currents in the cell.

Here, we will employ a macroscopic approach to the current simulation problem. We work
with some macroscopic effective conductivity σ and impute Ohms law for the currents in the
cell. Of course, this does not reflect the microscopic chemical and physical processes which are
governing a typical fuel cell. But we incorporate key macroscopic physical laws which we believe
to hold on a macroscopic scale in the cell and search for currents which satisfy these macroscopic
laws.

First, we collect ingredients which have been used in [11]. For the electric and magnetic fields
E and H we assume that the static Maxwell field equations

curl H = j, curl E = 0
div D = ρ, div B = 0 (4)

1 For example, the Company COMSOL based in Helsinki, Finland, develops the software FEMLAB for finite
element simulations and, in particular, offers courses on the simulation of currents in fuel cells.
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hold. Usually we will work in the case where there are no free charges, i.e. we have ρ ≡ 0.
Further, we have the material equations

D = εE, B = µH

j = σE (5)

with electric permittivity ε, magnetic suszeptibility µ, conductivity σ, elektric flux D and
magnetic flux B. Equation (5) is known as Ohm’s law. We assume that ε and µ are constant
and equal to ε0 and µ0. Because of curl E = 0 there is an electric potential ϕE with E = ∇ϕE .
This potential is determined only up to a constant and we use a normalization condition to
make it unique. Now, this yields j = σ∇ϕE . From

div j = ∇ · ∇ ×H = 0 (6)

and (5) we derive
∇ · σ∇ϕE = 0 in Ω. (7)

We can now summarize the underlying problem in the following definition.

Definition 2.1 (Anisotropic Boundary Value Problem of Magnetic Tomography)
Consider a domain Ω ⊂ R3 with Lipschitz boundary. Let σ be an anisotropic conductivity in Ω.
We search for the electric potential ϕE such that the partial differential equation (7) is satisfied
in Ω. This PDE is completed with the boundary condition

ν · σ∇ϕE = g (8)

on ∂Ω and the normalization ∫

Ω
ϕE(y) dy = 0. (9)

From (6) we know that there are no currents generated in the domain Ω. Via the divergence
theorem this leads to the admissibility condition

∫

Ω
∇ · j(y) dy =

∫

∂Ω
ν(y) · j(y) ds(y) =

∫

∂Ω
g(y) ds(y) = 0 (10)

The solvability of the anisotropic boundary value problem Definition 2.1 has been investigated
in [11]. The authors establish solvability of the problem in its weak form

∫

Ω
∇ψ · σ∇ϕEdy =

∫

∂Ω
ψν · σ∇ϕEds (11)

for ψ ∈ H1(Ω). We summarize the results in the following Theorem.

Theorem 2.2 (Uniqueness and Existence of Anisotropic Boundary Value Problem)
If the anisotropic conductivity distribution is coerzitiv, i.e.

<
(
v · σ(y)v

)
≥ γ|v|2, v ∈ R3, y ∈ Ω (12)

with some constant γ, then the problem given by Definition 2.1 has a unique weak solution in
H1(Ω) for all admissible boundary data g. The solution depends continuously on the boundary
data as elements in H−1/2(∂Ω).
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Figure 3. The grid for numerical computation of some single fuel cell and its physical simulation
for a full stack of fuel cells via a wire grid (right). The above simple wire grid has been used for
the first tests of magnetic tomography in 2002/03.

In [11] the authors employ the finite integration technique (FIT) for the numerical solution of
the above boundary value problem. The finite integration technique uses the Maxwell equation
in integral form on some cartesian grid. This is particular suitable for our situation, in which
the domain Ω is a union of several cuboids. Here the finite integration technique can be realized
by exactly calculating the currents flowing through some wire grid when the conductivities in
the different wires are known. Wire grids can be realized physically, compare Figure 3, such that
we solve a simplified real physical problem which has be used to test the algorithms of magnetic
tomography.2 The calculation of currents in a wire grid is carried out via mesh and know rules,
also known as Kirchhoff laws.

Theorem 2.3 (Convergence of FIT) Let σ be a coercive matrix. Then the equation system
arising from mesh and knot rules has a unique solution for each discretization (n1, n2, n3). For
nj →∞, j = 1, 2, 3, it converges towards the true solution of the boundary value problem.

Here, convergence is understood in the sense that the discretized problem is extended into
the space via some interpolation space. Kühn and Potthast [11] provide numerical examples in
three dimensions.3

Open problems. 1. More complex wire grids. Currently, the simulation of currents has been
carried out on fairly easy grids to approximate the active area of a fuel cell. More elaborate grids
need to be chosen and tested. As an error function we might use the simulated and measured
magnetic field when the current densities are provided via some reference technology in the
active layer of the cell. Such tests have been carried out, but only in a very preliminary stage.

2. Alternative numerical schemes. Investigate whether the finite integration technique
provides the most appropriate and efficient scheme to simulate currents in a fuel cell. With
the grid described above we work with currents which are focused in the wire grid. Higher-
approximation methods for current simulation might prove to be more adequate and stable for
current reconstruction when combined with appropriate projection schemes for discretization.
We think that it is an important task to formulate and test different methods like the

2 Compare Technical Reports of Tomoscience, some of which may be inaccessible due to confidentiality of the
commercial product.
3 The commercial Software MagneTom 4.0 of TomoScience is based on the finite integration technique and has
been the basis for all results which we provide below.
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finite element method, the Nyström method with higher order numerical quadrature and finite
difference schemes.

3. Fast simulation methods. Currently the number of unknowns used for current simulation
and fiel calculation is limited due to the fact that the mapping of the current into the magnetic
field on ∂G has a complexity of O(N · K) for a dimension N of the space of currents and K
evaluation points for H. It is highly desirable to develop fast simulation method, based either
on the fast Fourier transform (FFT) or on approximation methods like H-matrices, the fast
multipole-method or panel clustering. The FFT might bring the complexity down to 6O(N).

3. Uniqueness results
An important problem for magnetic tomography is given by the uniqueness question. Does a
magnetic field measured on ∂G determine the current distribution in Ω? This question naturally
leads to basic subproblems. First, do the measurements on ∂G determine the analytic magnetic
field in the exterior of Ω? Second, if the field is determined on Ωe, does it uniquely determine
the current distribution j in Ω. We will first give a simple example which demonstrates the
strong non-uniqueness of the general magnetic tomography problem.

Figure 4. We show an element of the nullspace of the Biot-Savart integral operator. The right
images shows the magnetic field on a line crossing the torus structure shown in the left image.
The magnetic field is close to zero outside and strong in the interior of the torus.

Consider a vectorial function m ∈ C2
0 (Ω) and define j := 4m. We calculate

(Wj)(x) = curl
∫

Ω

1
4π

1
|x− y|4m(y)dy

= curl
∫

Ω
4y

1
4π

1
|x− y|m(y)dy

= 0, x 6∈ Ω (13)

where we used Green’s second theorem and 4y
1

|x−y| = 0 for y 6= x. The full nullspace is
characterized via the following result [5].

Theorem 3.1 The nullspace of the Biot-Savart integral operator (2) is given by the set

N(W ) =
{
curl v : v ∈ H1

0 (Ω), div v = 0
}

. (14)
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Thus there is a large nullspace. Special elements of the nullspace have been constructed in
[5], compare Figure 4. However, as soon as we pass to discrete wire grids, a general uniqueness
theorem can be shown, which is due to the fact that the magnetic field H(x) generated by a
wire line γ with non-vanishing current has a singularity for x → γ. Similar principles can be
exploited to prove uniqueness for the current reconstruction from single-cells [18].

Connected to the uniqueness question is the characterization of the orthogonal space N(W )⊥
of the nullspace N(W ) with respect to the L2(Ω) scalar product

(ϕ,ψ)L2(Ω) =
∫

Ω
ϕ(y)ψ(y) dy. (15)

The space N(W )⊥ is particularly interesting since the standard Tikhonov regularization (see
Section 4.1) projects the solution density j onto the space N(W )⊥. The following theorem is
due to Kühn [9], extending results of [5].

Theorem 3.2 The orthogonal space of N(W ) is characterized by

N(W )⊥ =
{
j ∈ Hdiv =0(Ω) : ∃q ∈ L2(Ω) s.d. curl j = grad q

}
, (16)

where Hdiv =0(Ω) denotes the set of densities j in H1 with div j = 0.

An important conclusion of this result now follows from div j = 0 via curl curl = −4 +
grad div . We derive

4j = −curl curl j = −curl grad q = 0 (17)

for each element of N(W )⊥. Equation (17) is to be understood in H−1(Ω). Thus the cartesian
components of the current density j are weak solutions to Laplace’s equation and via standard
regularity results they are also a strong solution to Laplaces equation. As it is well known (c.f.
[8]) solutions of the Laplace equation satisfy a maximum-minimum principle, i.e. these functions
take their maximum or minimum on the boundary of a domain. This is a strong limitation to
the reconstruction algorithm via Tikhonov regularization which needs to be discussed further.

In Section 2 we have developed a boundary value problem for the simulation of currents in the
cell. We call such currents realistic in the sense that they satisfy the underlying mathematical
problem. What can we say about the reconstruction of realistic currents? Can such currents be
uniquely determined from measurements of their magnetic fields. A partial answer is given by
the following result [9, 5].

Theorem 3.3 (Reconstruction of realistic currents) Let j be a solution to the
boundary value problem given by Definition 2.1. Then we have

j ⊥σ N(W ) (18)

with orthogonality with respect to the scalar product

(ϕ,ψ)σ :=
∫

Ω
ϕ(y) · σ(y)−1ψ(y)dy. (19)

The theorem shows that if σ is known, then the currents are in exactly the right space
for unique reconstruction. However, if σ would be known we could calculate the currents by
solving the forward problem and would not need the magnetic field measurements. Usually σ
is unknown, that is the crucial point. In this sense the result of Theorem 3.3 does not help to
answer the uniqueness question nor does it provide an algorithm for the reconstruction. However,
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if σ is close to an homogeneous function, then the scalar product is close to the standard L2

scalar product and we can employ an approximation argument. In this case we conclude that
Tikhonov regularization will calculate a reasonable reconstruction by projecting onto the space
N(W )⊥ instead of the close space N(W )⊥σ .

Open problems. 1. Uniqueness for special situations. It has been shown for some special
situations that unique reconstruction of currents can be possible. For example, this result has
been established for wire grids and a corresponding result for single-cells with continuous current
distributions is possible [18]. Find further settings in which uniqueness can be shown.

2. Uniqueness for subspaces. Usually, for practical applications the problem of full continuous
current reconstruction is far to difficult. The goal is to achieve reliable reconstructions of currents
which are in some finite dimensional subspace Xn with sufficient spatial resolution (compare
Section 4) in the x1 − x2 plane, i.e. over the active area of the cell. Develop a mathematical
theory for uniqueness/non-uniqueness and stability for these situations.

4. Reconstruction of current densities and inclusions in fuel cells
The Biot-Savart operator (2) is a linear and bounded operator from (L2(Ω))3 into (L2(∂G))3.
Moreover, since it has analytic kernel it is a compact operator. Due to the standard theory of
compact linear operators they cannot have a bounded inverse and that equations of the form
(3) are highly instable. Small perturbations in the data usually lead to strong perturbations in
the reconstructions, such that naive inversion will not generate usefull results.

Over several decades many different regularization methods have been introduced to overcome
the problem of instability for such operators [4]. The key idea is to replace the unbounded inverse
W−1 by some bounded operator Rα depending on a regularization operator α. Here, we will
focus on three different methods for reconstruction and outline their main ideas and results.

4.1. Reconstruction methods via Tikhonov regularization and projection schemes
A standard regularization technique is given by the Tikhonov regularization with

Rα := (αI + W ∗W )−1W ∗, α > 0. (20)

Calculating jα := RαH is equivalent to minimizing the functional

µ(j) := ||Wj −H||(L2(∂G))3 + α||j||(L2(Ω))3 , (21)

see [8]. It is shown in [4, 2] that the operator Rα : L2(∂G) → L2(Ω) is bounded and that

RαH → Pj, α → 0, (22)

where P denotes the orthogonal projection operator onto N(W )⊥ in (L2(Ω))3. The convergence
(22) is pointwise, but not uniform. In particular, for every set of measurements Hmeas with
data error of size ||Hmeas −Wjtrue|| = δ > 0 we need to choose the regularization parameter α
appropriately. Several methods for the choice of α for the operators of magnetic tomography
based on stochastical principles are investigated in [1]. We remark that these methodds work
well as long as the noise is mainly stochastic in nature. For noise arising from systematic
measurement errors, most stochastic methods underestimate the noise and by choosing the
regularization parameter too small they provide useless reconstructions which are polluted by
artefacts.

The general application of the Tikhonov regularization to the magnetic tomography problem
has advantages and disadvantages. First, it does not need to know further conditions like the
boundary condition (8), the divergence condition (6) or directional constraints

e3 · j(y) ≥ 0, y ∈ Ω, (23)
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which hold due to the chemical pathways of protons and electrons within the cell. This gives a
large flexibility and guarantees the equation to remain linear. However, it also leads to a large
number of unknowns. Since the number of unknowns are proportional to the ill-posedness of
the equation, the use of general Tikhonov regularization will result in a more unstable system
than equations which incorporate further constraints and conditions.

The following projection method provides the possiblity to flexibly incorporate conditions and
knowledge about the unknown currents j. Let Xn be a subspace of dimension n ∈ N of our
solution space (L2(Ω))3. Here we assume that the functions j ∈ Xn satisfy a set of constraints
which we believe to hold for the current densities under consideration. Consider some basis{
j(k) : k = 1, ..., n

}
of Xn. Then every element j ∈ Xn can be written in terms of the basis

functions

j =
n∑

k=1

βkj
(k). (24)

By P we denote the orthogonal projection onto Xn. In this basis the Biot-Savart integral
equation can be written as

Wβ = QH (25)

where Q is the orthogonal projection operator onto Yn := WXn, β = (β1, ..., βk)T and
W = QWP . We tested a Tikhonov method with regularization parameter α applied to the
projection equation (25).

We have tested several spaces Xn, for example the divergence condition (6) in the form of
Kirchhoff or knot rules, respectively, which leads to what we call divergence free reconstruction.
In particular, for reconstructions from single cells where the only unknown is the conductivity
component σ33(y) of the matrix σ(y) for currents flowing through the membrane, we have chosen
a special basis approach. In this case Xn is the space of simulated current densities which arise
from particular choices of σ33(y), for details we refer to [7]. Results arising from real data will
be shown in Section 5.

A stochastic setting for magnetic tomography for fuel cells has been investigated in [17]. In
particular, the authors calculate the spatial distribution of the standard deviation in the x1−x2

plane for a single cell. To this end three alternative methods are presented. The magnetic
tomography problem is solved via a Markov Chain Monte Carlo Method with Gibbs sampler
within the Bayesian approach.

4.2. The point source method
In this and the following section we will investigate a particular case of the magnetic tomography
problem. We will assume that the conductivity σ is constant in Ω \D with some domain D ⊂ Ω
and constant in D. This is the case where some inclusion D with a conductivity different from
the background conductivity is to be recovered.

As a preparation for the following reasoning as in [9] we rewrite the Biot-Savart representation
of the magnetic field as

H(x) = curl
∫

Ω\D
Φ(x, y)j(y)dy + curl

∫

D
Φ(x, y)j(y)dy

= (σΩ − σD)SD(ν × E) + σΩSΩ(ν × E) (26)

with the single-layer potential

(SGa)(x) =
∫

∂G
Φ(x, y)a(y)ds(y), x ∈ Rm. (27)
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Figure 5. Setting for magnetic impedance tomography, where we try to find an inclusion in a
homogeneous conducting material from measurements of the potential on the boundary ∂Ω of
some domain Ω and the magnetic field H in the exterior of Ω for one single current density j.

Usually the exterior of Ω is an accessible region in space, thus it is reasonable to measure
the potential ϕE on the boundary ∂Ω. From this potential we can calculate the tangential
components ν × E of the static electric field. In contrast to the standard setting of impedance
tomography (EIT) here we have these data available only for one fixed choice of the current
density j.

The point source method provides a scheme how to evaluate the term

w(z) = SD(ν × E)(z) =
∫

∂D
Φ(z, y)t(y)ds(y), z ∈ Ω \D (28)

with t(y) = ν(y)×E(y)|∂D in magnetic impedance tomography from the knowledge of H. If in
addition ν × E on ∂Ω is known, we can calculate the magnetic field H(x) in Ω \ D. The full
magnetic field in the interior is constructed by

H(z) = (σΩ − σD)w(z) + σΩSΩ(ν × E)(z), z ∈ Ω \D. (29)

We multiply w(x), x ∈ ∂Ω, by some vector field a ∈ (L2(∂Ω))3 and exchange the order of
integration to derive

∫

∂Ω
a(x)w(x)ds(x) =

∫

∂Ω

∫

∂D
Φ(x, y)t(y)ds(y)ds(x)

=
∫

∂D

( ∫

∂Ω
Φ(x, y)a(x)ds(x)

)
t(y)ds(y)

=
∫

∂D
v(y)t(y)ds(y)

where
v(y) :=

∫

∂Ω
Φ(y, x)a(x)ds(x), y ∈ Ω. (30)

For the approximation v(y) = vz(y) ≈ Φ(y, z) we obtain

µ[a] :=
∫

∂Ω
a(x)w(x)ds(x)
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Figure 6. Reconstruction of some magnetic field arising from a current density with an elliptic
inclusion in the center of our domain Ω. We show the first component H1(x) of the magnetic
field simulated (right) and reconstructed (left). The reconstruction is valid only in the exterior
of the inclusion, i.e. the fields in the interior of the inclusion do not have a meaning.

≈
∫

∂D
Φ(z, y)t(y)ds(y)

= w(z) (31)

i.e. we approximately reconstruct the desired field.

Thus, the idea of the point source method is to approximate Φ(y, z) on some approximation
domain Gz by a single-layer potential with density az living on ∂Ω. Then µ[az] will approximate
w(z). The following theorem which proves the convergence of the point source method for
magnetic field reconstruction in Ω \D is due to Kühn [9].

Theorem 4.1 (Convergence of point source method) Let an be a sequence of densities
such that ∣∣∣

∣∣∣Φ(·, z)−
∫

∂Ω
Φ(·, y)an(y)ds(y)

∣∣∣
∣∣∣
C(∂D)

→ 0, n →∞. (32)

Then we have
(σΩ − σD)µ[an] + σΩSΩ(ν × E)(z) → H(z), n →∞. (33)

for z ∈ Ω \D

4.3. The no-response test
The point source method can process one set of data, it can reconstruct the magnetic fields,
but it cannot locate the inclusion if the boundary condition is not known or if the boundary
condition is a transmission condition. Thus, it is a basic problem to work on methods which
can reconstruct the inclusion or its properties from measurements of the fields for one pair of
data. One possible answer to this problem is the no-response test. We use a modification of the
derivation (31) from above.

µ[a] =
∫

∂Ω
a(x) w(x)︸ ︷︷ ︸

=SD(ν×E)(x)

ds(x)

=
∫

∂Ω

∫

∂D
Φ(x, y)t(y)ds(y)ds(x)

=
∫

∂D

( ∫

∂Ω
Φ(x, y)a(x)ds(x)

)
t(y)ds(y)

Inverse Problems in Applied Sciences—towards breakthrough IOP Publishing
Journal of Physics: Conference Series 73 (2007) 012008 doi:10.1088/1742-6596/73/1/012008

11



Figure 7. Reconstructions of some inclusion where the conductivity has been altered in some
cuboid. The reconstruction via the no-response test uses magnetic field measurements and
potential measurements for one current distribution.

=
∫

∂D
v[a](y)t(y)ds(y)

where
v[a](y) :=

∫

∂Ω
Φ(y, x)a(x)ds(x), y ∈ Ω. (34)

Here we now exploit the full freedom in the choice of the density a. The convergence of the
no-response test for magnetic tomography is shown in [16].

Theorem 4.2 (Convergence of no-response test) Let ε > 0. The functional µ[a] with
a ∈ L2(∂Ω) chosen such that

||v[a]||C(G) ≤ ε (35)

is bounded if w is analytically extensible into Ω\G. If w is not analytically extensible into Ω\G,
then the supremum over µ[a] where a satisfies (35) is unbounded.

Here, analytic extension is understood in the sense that there is an analytic function in R3\G
which coincides with w on R3 \Ω. For a numerical realization of the no-response test we follow
[9, 16].

Definition 4.3 (No-response test) We choose constants ε and C. Let Aε(G) be the set of
densities a ∈ L2(∂Ω) such that

||SΩa||C(G) ≤ ε. (36)

The no response test calculates
µ∞(G, ε) := sup

a∈Aε(G)
µ[a] (37)

and
Drec :=

⋂

µ∞(G,ε)≤C

G (38)
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Figure 8. The images show the first, second and third prototype of the MagneTom measurement
system for magnetic tomography. There are two sensors which can be moved independently
around the cell to register the three-dimensional magnetic field.

Kühn has carried out numerical tests for the no-response test for magnetic tomography,
compare Figure 7. For further details and reconstructions we refer to [9].

Open problems. 1. Choice of subspaces. Develop a method for an optimal choice of
the subspaces for magnetic tomography for fuel cells. The subspaces need to be sufficiently
large to encorporate all possible currents. They need to use all conditions in a way such that
measurement errors in the conditions (for example errors in the location of the boundaries of
the cells) do not fully destroy the reconstructions. And the spaces have to be chosen such that
they minimize the ill-posedness of the inverse problem under the above constraints.

5. Real data reconstructions and comparison with reference techniques
In this section we will discuss the realization of magnetic tomography in the measurement
device MagneTom by TomoScience. A pilot paper for the full technology can be found in [6].
Magnetic measurements are carried out by magnetic sensors (C1), which in the easiest setup
can be moved around by some mechanical hardware (C2) with electronic controls (C3). The
system components for a magnetic tomography systems include control software (C4) for the
mechanical parts and for the sensors (C5) as well as calibration software (C6). Further, to achieve
adequate reconstructions there is a mathematical software component (C7) with simulation and
reconstruction algorithms, which are controlled via some graphical user interface (C8). We
remark that we needed extensive software development for the calibration process (C6) of the
magnetic sensors, including simulation and optimization routines for sensor adjustments, which
have turned out to be crucial steps as a preparation for the inversion schemes.

A machine to realize the steps C1 to C8 has been developed by TomoScience GbR Wolfsburg
since 2001. Recently the third prototype has been a joint project with the Research Center
Jülich, Germany4. The basic setup can be seen in Figure 8. The upper sensor can be moved
freely in three dimensions, the movement of the lower sensor is bound to a plane in the x1 − x3

plane, where we choose x3 to be along the long bars which can be clearly seen in each figure,
x2 vertically points to the top. As a preprocessing step we took measurements from a particular
wire loop which was chosen to be of triangular form. In principle, this wire loop can be well
simulated and we used the simulation and measurements to calibrate the exact location and
orientation of the magnetic sensors on the chips in the sensor boxes, which can be seen in white
or black, respectively, in Figure 8.

4 Research Center Jülich, Institute for Materials and Processes in Energy Systems, Energy Process Engineering
(IWV3), http://www.fz-juelich.de/iwv/iwv3/index.php
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Figure 9. Detection of two holes in the membrane of the fuel cell, as indicated in the middle
image. Left we show the reconstruction via magnetic tomography, the dark blue areas indicate
regions of low current density. The right-hand image shows the fuel cell and the MagneTom
machine.

Figure 10. Reconstruction of currents in a three-dimensional wire grid from real-data
measurements (left). The results show that in principle we can detect areas of low current
density in a three-dimensional current distribution. The right-hand image shows the reference
technology for the comparison displayed in Figure 11.

The basic principle for reconstructions for single-cells is shown in Figure 9. The currents are
flowing through the active area of the fuel cell shown in the right-hand image. Here we have
carried out reconstructions with two holes in the membrane which have been created artificially
(see middle images) and lead to a reduction of the current density in the cell. These wholes can
be clearly seen in the left-hand image of Figure 9, which is the three-dimensional representation
of the currents in x3-direction via a density plot. The blue grid lines in this image reflect
the choice of the reconstruction grid on which via finite integration technique the currents and
magnetic field have been calculated. The software allows free and interactive choice of all grid
parameters via a graphical user interface. Further, the management of the dependencies of the
different input parameters, data inputs and simulations on which the reconstruction is based
has been carried out via a specially designed expert system.

For the real-data reconstructions we have employed the Tikhonov and projection methods
described in Section 4.1. We found that the system includes strong systematic error into the
measured magnetic field H. Therefore, to achieve good reconstructions we needed to work
with a rather large regularization parameter α, usually between α = .5 and α = 3. We have
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developed some scaling method to achieve a reliable scaling of the reconstructions. The scaling
first calculates

jscal := RαWj0 (39)

for some typical density j0 and then determines a scaling constant via

cα := ||jscal||L2(Ω)/||j0||L2(Ω). (40)

Finally, we correct the regularization scheme Rα by

jα := cαRαHmeas. (41)

We call this the scaled Tikhonov or projection method.
Reconstructions from a threedimensional wire grid can be seen in Figure 10. This proves the

feasibility of general three dimensional reconstructions, as they are targeted for general fuel cell
stacks as shown in Figure 2. For a single-cell fuel cell based on hydrogen we show reconstructions
in Figure 11. The results prove the feasibility of the method.

We remark that we have not managed to improve the reconstructions by using all the available
information. In principle we can show by simulation that the reconstructions become more stable
and reliable when the space Xn is chosen smaller [7]. However, so far for the real data in the
fuel cell application the additional information seems to be polluted by measurement errors and
it does not improve the outcome of the reconstruction procedure.

Figure 11 shows a comparison of the results of current reconstruction with magnetic
tomography (right-hand column) and some reference technology [19] (left-hand column), where
the currents are measured invasively by building wires into one of the layers and monitoring a
potential gradient along this layer. The images have a common scaling, i.e. the each color in the
pictures corresponds to the same current in mA/cm2. This proves that the reconstruction of
currents is in principle possible. The overall distribution of the current density is reconstructed.
However, we think that the spatial distribution of the reconstructions needs to and can be
improved.

Open problems. 1. Microscopic and macroscopic models. Match the microscopic laws and
models with the macroscopic laws and models to describe the processes and in particular the
genesis and behaviour of currents in a fuel cell.

2. Error analysis. Develop models for the analysis of stochastic and - more important
- systematic errors in magnetic tomography. Then, investigate both reconstruction methods
and the choice of regularization parameters and create new methods for the optimal choice of
regularization parameters in the presence of real-world noise.

3. Improved spatial resolution. Improve the spatial resolution of state-of-the-art magnetic
tomography. This can be achieved for example by a reduction of the systematic error in a
fuel cell, but it might also be possible to employ hierarchical methods for reconstruction, which
reduce the ill-posedness of the full magnetic tomography problem.

4. Maximal potential of magnetic tomography. Evaluate the maximal potential of magnetic
tomography by calculating what quality of reconstructions can be achieved with different error
levels in the measurement of magnetic fields. This is of interest in particular in the practically
relevant setting! Use stochastical methods for evaluating the error distributions.

5. Optimize the location of measurement points. Improve the results of magnetic tomography
by optimizing the location of measurement points. We are free to choose the measurement points
up to technical constraints given by the size of sensor boxes and the fuel cell end plates. Develop
a technique to find measurement points which yield an optimal current reconstruction.
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Figure 11. Comparison of the results of current reconstruction with magnetic tomography and
some reference technology where the currents are measured invasively by building wires into one
of the layers and monitoring a potential gradient along this layer. The images have a common
scaling, i.e. the each color in the pictures corresponds to the same current in mA/cm2. This
proves that the reconstruction of currents is in principle possible. The overall distribution of the
current density is reconstructed. However, the spatial distribution needs to be improved.
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