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Abstract
We consider the inverse problem of reconstructing a current distribution from
measurements of its magnetic field. Uniqueness issues and simulations for the
reconstruction are studied. Given the magnetic field on a surface surrounding
the current distribution we show that a projection of the current distribution
can be reconstructed uniquely. In addition, we derive some properties of
directed current distributions that reflect the properties and difficulties of the
reconstruction. A Tikhonov-projection scheme complemented by an artefact-
correction algorithm is employed to reconstruct the current distribution within
a cuboid. By numerical examples in three dimensions we show that for
measurement errors up to 1% we can detect areas of low-current density within
the cuboid.

(Some figures in this article are in colour only in the electronic version)

Dedicated to Erich Martensen on the occasion of his 75th birthday.

1. Introduction

Assume that measurements of the magnetic field H produced by a current distribution j in a
three-dimensional conducting domain� are taken on the surface of a domain containing� in
its interior. Consider the task of reconstructing the current distribution j within � from the
measured magnetic field H . In particular, we are interested in the detection of areas within�
where the conductivity is low and where the currents are small.

We will reconstruct currents j which arise in the form j = σ grad ϕ from an electric
potential ϕ satisfying

div σ grad ϕ = 0 (1.1)

in a bounded domain � ⊂ R
3 and satisfy the boundary condition

ν · σ grad ϕ = g (1.2)
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on the boundary of �, where ν denotes the exterior normal vector to ∂�. The industrial
problem which builds the background of the problem (1.1), (1.2) is the reconstruction of
current densities within fuel cells from their magnetic fields. Fuel cells are innovative devices
that produce electricity from renewable fuel and there is a huge interest in the monitoring of
the internal current distribution in these cells both for research, development and maintenance
purposes. With the industrial problem there is also a strong interest in directed currents, since
by chemical arguments and technical design the currents in a fuel cell can only flow in one
direction. For this reason we will investigate the special situation of the reconstruction of
directed currents. We will show that the assumption of directedness has some consequences,
but in general does not yield better uniqueness results for the problem as expected by our
industrial partners.

However, we think that the results are highly interesting within a wider range of
applications. At two points they overlap the field of medical magnetic imaging, where a
current density j = je + js needs to be reconstructed from magnetic measurements where
je = σ grad ϕ is a solution of the inhomogeneous problem

div σ grad ϕ = div js (1.3)

in a domain � with a source current js and boundary condition

ν · σ grad ϕ = 0 (1.4)

on ∂� (see literature cited below). First, for biomagnetic problems a current density j needs to
be reconstructed from its magnetic field H or from the normal component ν · H of the magnetic
field on some exterior surface. The reconstruction procedure presented in this work will apply
to this problem, since it does not need any assumptions on the nature of the currents under
consideration. In particular, we analyse the null-space of the Biot–Savart integral operator
W that maps the currents j onto their exterior magnetic field H and show that in general at
most a projection of the current j can be reconstructed. This applies both to the fuel-cell
application and to the biomedical problem. Second, we will derive a characterization of the
‘realistic’ currents for the fuel-cell model, that theoretically analyses the relation between the
projected reconstructed currents and the true currents in the cell. We expect this analysis to lead
to more involved reconstruction algorithms in the near future. We would like to encourage
the biomedical community to derive analogous characterizations for the biomedical model
situation (1.3), (1.4).

We first address the topic of uniqueness and characterize the space of current distributions
in terms of the Biot–Savart operator W . Then, we apply a Tikhonov regularization to
the solution of the ill-posed integral equation of the first kind W j = H . We show that
the Tikhonov regularization reconstructs the projection of the current distribution onto the
orthogonal complement of the nullspace N(W ) with respect to an appropriate inner product.
Our theoretical analysis is complemented by a numerical study of current reconstructions with
simulated data in three dimensions. This includes an artefact-correction algorithm to deal
with artefacts produced by regularization in the case of noisy data.

In order to make our work accessible to a broader audience we include some of the
classical results both from the potential theory for static magnetic fields and from the theory
of regularization of ill-posed problems.

Before we proceed, we will provide a brief review and discussion of some related work
dealing with current reconstructions from magnetic fields. All the following works deal with
current reconstruction from magnetic fields, where the underlying model from which the
currents arise may differ from application to application.

Banks and Kojima [1] investigated a two-dimensional problem. The direct problem
considered in their paper treats a homogeneous conductor using a boundary value problem
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for the electric potential. Then, as an inverse problem, they try to detect an interior boundary
that encircles a nonconducting area, i.e. an area with vanishing currents. They search for this
boundary curve by minimization of a fit-to-data functional.

Sarvas [15] gave a detailed introduction to the physics of biomagnetic imaging, i.e.
the visualization of currents inside a body from their magnetic fields. The direct model
investigates the currents that arise from electromotive forces impressed by biological activities
in conducting tissues. For the direct (and inverse) problem Sarvas considers a piecewise
constant conductivity and reduces the problem to a Poisson equation with transmission
conditions at the interfaces between the domains of piecewise constant conductivity and with
a compactly supported source term in R

3. For the inverse problem Sarvas employs a least-
squares fit, notes that numerical instabilities occur, and states the need for regularization.

In principle, Tilg and Wach [17] follow the approach of Sarvas considering currents that
arise from biological activities and consider piecewise constant conductivities. For the inverse
problem they use a Wiener filter estimation as a regularization method to reconstruct currents
on a two-dimensional surface (the outer cortex surface) separating two regions of different
conductivities in the human brain. Similar problems reconstructing currents on surfaces in
the brain were treated by Ramon and colleagues [11] and [14], both using a least-squares fit.
In [11] it is shown that the Biot–Savart operator has a nontrivial nullspace and a projection
method is employed to deal with this nonuniqueness. Jeffs et al [8] investigate the inversion
of the Biot–Savart operator by a singular-value decomposition and algebraic reconstruction
technique (ART) that leads to a (weighted) minimum norm solution.

The use of biomagnetic imaging for the location of magnetic sources in cardiomagnetic
inverse problems is described, e.g., by Stroink [16]. There is a number of papers on probabilistic
reconstruction methods for bioelectromagnetic inverse problems,see the literature cited in [17].
Furthermore, we mention the work on the related topic of classical impedance tomography
and refer, among many others, to [2, 7].

In our numerical simulations we treat the fuel-cell geometry and consider current
distributions in a cuboid with the axis parallel to the coordinate axis. This directly applies
to the standard fuel-cell model from industrial applications. The theory, numerical analysis
and implementation of the direct problem to compute the current distribution within� and the
magnetic field outside� (for given conductivity distributions in� and current influxes through
the boundary ∂�) has been considered in [12]. We follow [12] and use the finite integration
technique for the forward model, i.e. we solve a discretized version of the knot equation
div j = 0 and the equation curl j = 0 on a grid. As shown in [12], this method has linear
convergence when the grid size tends to zero. For the discretization of the Biot–Savart integral
operator W and solution of the inverse problem we will use a straightforward rectangular rule
for the calculation of the integrals, which also leads to linear convergence for the forward
problem.

2. The uniqueness problem for current reconstructions

This section is concerned with the uniqueness question for the reconstruction of current
distributions from the measurement of the magnetic field on some surface containing the
conducting domain � in its interior.

2.1. The magnetic field in the exterior domain

First, we consider a magnetic field H defined in the exterior �e := R
3\� of some simply

connected bounded domain � ⊂ R
3. For the inverse problem treated later we will measure
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the trace of this magnetic field on the boundary ∂G of some domain G with � ⊂ G or parts
of this boundary only. Therefore we need to investigate whether these measurements uniquely
determine the magnetic field in �e. This will be done using a boundary value problem in the
exterior of G. In particular, by theorem 1 we will answer the question under which assumptions
the normal component ν · H determines the magnetic field and when the full trace of H on
the exterior surface is necessary. For the fuel-cell application we will show that knowledge of
the normal component is not sufficient for determining H , but that the measurement of the full
field H is sufficient, see theorem 2.

We base our analysis on the static Maxwell equations

curl H = j, curl E = 0,
div D = ρ, div B = 0

(2.1)

and the material equations

D = εE, B = µH, j = σ E (2.2)

where ε and µ are constants and where we assume that the conductivity σ is inhomogeneous
and anisotropic, i.e. σ is a matrix function. In particular, we assume that there are no currents
in the exterior�e of � and that the current satisfies

div j = 0 in � (2.3)

and

ν · j = 0 on ∂�, (2.4)

where ν denotes the outward unit normal of ∂�. Condition (2.3) is a consequence of the vector
identity div curl = 0 and the Maxwell equation curl H = j . Condition (2.4) implies that
there is no current flux through ∂�. Our main argument for the introduction of this condition is
the search for an appropriate assumption under which the normal component of H is sufficient
for determining H in the exterior�e of �. For the fuel-cell application condition (2.4) is not
satisfied and we will provide an adequate result for this case below.

If both conditions (2.3) and (2.4) are fulfilled H is given by Biot–Savart’s law

H (x) = curl
∫
�

�(x, y) j (y) ds(y), x ∈ �e, (2.5)

and satisfies curl H = 0 in �e, see [10, 12]. Here, as in [12], we use the notation

�(x, y) := 1

4π |x − y| , x �= y ∈ R
3,

for the fundamental solution of the Laplace equation in R
3.

Since �e is simply connected, curl H = 0 implies that H can be expressed as a gradient
field, i.e. in the exterior �e of � we have

H = grad ϕH (2.6)

with a magnetic potential ϕH . From equations (2.1) and (2.6) and the identity div grad = 


we observe that the magnetic potential ϕH satisfies the Laplace equation


ϕH = 0 in �e. (2.7)

We will measure either the magnetic field H on the boundary ∂G or only its normal component
ν ·H with the outward unit normal ν of ∂G. In the latter case we are given the normal derivative

∂ϕH

∂ν
= g on ∂G (2.8)
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of the potential ϕH , where we denote the measured normal component of H by g. Since the
potential is determined only up to a constant, we normalize ϕH by the condition

ϕH (x) = o(1), |x | → ∞, (2.9)

uniformly for all directions. Then, the magnetic potential ϕH satisfies an exterior Neumann
problem for the Laplace equation in the unbounded domain Ge := R

3\G as defined by (2.7)–
(2.9).

The well known uniqueness and existence results on this classical potential theoretic
boundary value problem can be summarized as follows. The exterior Neumann problem
(2.7)–(2.9) for the Laplace equation is uniquely solvable. For a proof we refer to [9], theorems
6.11 and 6.24. Since solutions to the Laplace equation are analytic in their domain of definition
(see [9]), from the uniqueness in Ge we conclude that the magnetic potential ϕH is uniquely
determined in all of �e through the normal derivative on ∂G. Consequently we can state the
following theorem.

Theorem 1. Let H be the magnetic field generated through Biot–Savart’s law (2.5) by a current
distribution j in � that satisfies conditions (2.3) and (2.4). Then H is uniquely determined in
all of �e by the normal components ν · H of H on ∂G.

For modelling the fuel-cell problem it is necessary to consider nonclosed systems and
allow current distributions j in Biot–Savart’s law (2.5) that do not satisfy the flux condition
(2.4). In this case, H as given by (2.5) no longer satisfies curl H = 0 in �e and therefore the
above arguments do not apply. However, as a derivative of a volume potential H satisfies the
vector Laplace equation in�e, i.e. its Cartesian components satisfy the Laplace equation. Now
we can apply the uniqueness for the exterior Dirichlet problem for the Laplace equation in
Ge (see [9], theorem 6.11), i.e. the maximum–minimum principle for harmonic functions, and
again the analyticity of solutions to the Laplace equation to establish the following theorem.

Theorem 2. Let H be the magnetic field generated through Biot–Savart’s law (2.5) by a current
distribution j in � that does not necessarily satisfy the conditions (2.3) and (2.4). Then H is
uniquely determined in all of �e by the trace of H on ∂G.

2.2. Nonuniqueness and nullspaces

As the next step we show that in general there is no uniqueness for the reconstruction of current
distributions from their magnetic fields, i.e. the Biot–Savart operator W : C(�̄) → C(∂G)
defined by

(W j)(x) = curl
∫
�

�(x, y) j (y) dy, x ∈ ∂G, (2.10)

has a nontrivial nullspace.
Later, we will relate this nullspace to the realistic solution space of current densities. Here,

the term realistic is attached to currents that arise within the fuel-cell model (1.1), (1.2).

Definition 3. We call a current distribution j realistic if it satisfies div j = 0 in� and is based
on a conductivity distribution σ in the sense of Ohm’s law

j = σ E (2.11)

with the electric field E ∈ (C(�̄))3 ∩ (C1(�))3 satisfying the static Maxwell equations
div E = 0, curl E = 0 in �. For this we assume that the conductivity is described by a
positive definite matrix function σ : � → R

3 × R
3.
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We note that curl E = 0 in � implies the existence of an electric potential ϕE such that
E = grad ϕE . The above properties of a realistic current distribution imply that, after an
appropriate normalization, ϕE is a solution to the interior Neumann problem

div σ grad ϕE = 0 in �, (2.12)

ν · σ grad ϕE = g on ∂�, (2.13)∫
�

ϕE ds = 0 (2.14)

with some function g ∈ C(∂�) satisfying
∫
∂�

g ds = 0. This elliptic boundary value problem
is investigated in section 2.2 of [12]. In particular, the set of realistic current distributions is a
linear subspace of (H 1(�))3.

We denote the space of two-times continuously differentiable vector fields � → R
3 with

compact support in� by (C2
0 (�))

3. The following theorem will enable us to construct a large
set of nontrivial current densities in � that have a vanishing magnetic field in the exterior of
�. This set is as large as the space (C2

0 (�))
3 itself and basically describes the nullspace of the

operator W .

Theorem 4. The nullspace

N(W ) = { j ∈ (C(�))3 : W j = 0 on ∂G} (2.15)

of the operator W : C(�) → C(∂G) contains the linear subspace

M := { j = 
m : m ∈ (C2
0 (�))

3}. (2.16)

Proof. For j ∈ M there exists m ∈ (C2
0 (�))

3 such that j = 
m. Then, from Green’s second
integral theorem we have that∫
�

�(x, y) j (y) dy =
∫
�

�(x, y)
m(y) dy

=
∫
�


y�(x, y)m(y) dy +
∫
∂�

{
�(x, y)

∂m

∂ν
(y)− m(y)

∂�(x, y)

∂ν(y)

}
ds(y)

for x ∈ �e. The right-hand side vanishes, since
�(x, ·) = 0 in� for x ∈ �e and m vanishes
together with its derivative on the boundary ∂�. This implies that∫

�

�(x, y) j (y) dy = 0

for x ∈ �e and the proof is finished. �

We note that by imposing the condition div m = 0 in � we obtain current distributions
that fulfil the conditions (2.3) and (2.4).

2.3. Properties of directed current densities

Since by the previous theorem, in general, we do not have uniqueness for the reconstruction of
current distributions from their magnetic fields, we will now investigate the question whether
this uniqueness can be restored by restricting ourselves to directed current distributions. As
mentioned in the introduction, directed currents arise in fuel cells, where the chemical process
and design of the cell allows only one direction of electron flow. We will see that for directed
current distributions in general we will not obtain uniqueness, but we can show that nontrivial
directed current distributions will always produce nontrivial magnetic fields.
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Definition 5. We call a current distribution j ∈ (C(�̄))3 directed if there exists a direction d ∈
R

3 with |d| = 1 such that

j (x) · d � 0, x ∈ �. (2.17)

Furthermore, we call a directed current distribution j cone directed if for some angle
0 < β < π/2 we have

j (x) · d � tan β| j (x)| (2.18)

for all x ∈ �.

Then from theorem 2 we can deduce the following result.

Theorem 6. Let j ∈ (C(�̄))3 be a cone directed current distribution that does not necessarily
fulfil conditions (2.3) and (2.4) and let the magnetic field H induced by j through Biot–Savart’s
law (2.5) satisfy H = 0 on ∂G. Then we have j = 0 in �.

Proof. We choose the coordinate system such that the x3-axis coincides with the vector d and
� is part of the upper half space. According to Biot–Savart’s law we have

H (x) = 1

4π

∫
�

j (y)(x − y)

|x − y|3 dy, x ∈ �e.

Consequently the second component H2 of H is given by

H2(x) = 1

4π

∫
�

j3(y)(x1 − y1)− j1(y)(x3 − y3)

|x − y|3 dy (2.19)

for all points of the form x = (x1, 0, x3). Since j is a cone-directed distribution, with a constant
β̃ := tan(β) we have the estimates

j3(y) � β̃| j1(y)|, y ∈ �, (2.20)

and

j3(y) � β̃| j2(y)|, y ∈ �. (2.21)

Since � is a bounded set there is a constant R such that |y| < R for y ∈ �. For

x1 > β̃R + R (2.22)

we now obtain

β̃ y3 − (x1 − y1) < 0.

For x3 = 0 and x1 chosen so that (2.22) is satisfied we obtain

j3(y)(x1 − y1)− j1(y)(x3 − y3) = − j1(y)y3 − j3(y)(x1 − y1)

� (β̃ y3 − (x1 − y1)) j3(y) � 0, (2.23)

where equality can only occur when j3(y) = 0. In this case from (2.20) we conclude that
j1(y) = 0. From (2.19) and (2.23) we find that

H2(x) � 0,

and thus, for sufficiently large x1, we have proven the equivalence

H2(x1, 0, 0) = 0 if and only if j1 = j3 = 0 in �. (2.24)

Since by theorem 2 the condition H = 0 on ∂G implies that H = 0 in the exterior of � from
the equivalence (2.24) we conclude that j1 = j3 = 0 in �.

With the same arguments applied to the components H1, j2 and j3 and a point x = (0, x2, 0)
with x2 > β̃R+R we obtain that j2 = j3 = 0 in�, i.e. j = 0 in�, and the proof is complete. �
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We proceed with a result on the reconstruction of a directed current distribution with
direction d = (0, 0, 1) in a rectangular domain �� given by

�� =
{

y = (y1, y2, y3) ∈ R
3 : |y1| < a1

2
, |y2| < a2

2
, |y3| < a3

2

}
(2.25)

with parameters a j > 0, j = 1, 2, 3. We denote the vertical part of the boundary ∂�� by �̃,
i.e.,

�̃ :=
{

y = (y1, y2, y3) ∈ ∂�� : |y3| < a3

2

}

and assume that condition (2.4) is satisfied only on �̃, i.e.,

ν · j = 0 on �̃. (2.26)

Theorem 7. Let j be a realistic and directed current distribution in �� with direction
d = (0, 0, 1) satisfying (2.26) that is based on a positive definite conductivity distribution
σ . Assume that the magnetic field H induced by j through Biot–Savart’s law (2.5) satisfies
H = 0 on ∂G. Then j = 0 in ��.
Proof. As a continuous function the component j1 is bounded on ��. Therefore we can
estimate ∣∣∣∣

∫
��

j1(y)y3

|x − y|3 dy

∣∣∣∣ � c1

|x |3 (2.27)

for all sufficiently large values of |x | and some constant c1. Since by assumption j3(y) � 0
for all y ∈ ��, we have j3(y)(x1 − y1) � 0 for all sufficiently large x1 and y ∈ ��. Assume
that j3 �= 0. Then we obtain∣∣∣∣

∫
��

j3(y)(x1 − y1)

|x − y|3 dy

∣∣∣∣ � c2

|x1|2 (2.28)

for all sufficiently large x = (x1, 0, 0) and some positive constant c2. This yields

|H2(x)| � c

|x1|2 (2.29)

for all sufficiently large x = (x1, 0, 0) and some positive constant c, where H2 is given by
(2.19). On the other hand, by theorem 2 from H = 0 on ∂G we have that H = 0 in R

3\��.
This contradicts (2.29) and consequently j3 = 0 in ��. Together with (2.26) this implies that
ν · j = 0 on ∂��.

From this, since we assume that in�� we have div j = 0 and j = σ E with E = grad ϕE ,
using the Gauss divergence theorem we can conclude that∫

��
E · σ E dx =

∫
��

grad ϕE · j dx =
∫
∂��

ϕEν · j ds = 0.

Finally, this implies E = 0 in ��, since σ is positive definite and consequently j = σ E = 0
in ��. �
Remark. In general the results of theorems 6 and 7 do not yield uniqueness for reconstructions
of current densities. The difference of two directed current densities does not need to be
directed and then we have no results on this difference. Moreover, adding a small element
of the nullspace of W to a directed current distribution will produce another directed current
distribution with the same exterior magnetic field. Geometrically, the results show that for the
set E of cone directed current distributions and the nullspace N(W ) in the space (C(�̄))3 the
relation

N(W ) ∩ E = {0}, (2.30)

is satisfied, i.e. the nullspace of W and the set E have only the trivial function in common.
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2.4. Characterization of the solution space

As a further step after the investigation of directed current distributions we now derive a
characterization of the targeted solution space of the inverse problem in terms of the nullspace
of the Biot–Savart operator W . To this end we need to take into account the conductivity σ ,
which will be unknown in the end, but is an integral part of the analysis of the inverse problem.
Given a matrix function σ : � → R

3 × R
3 we define the space (L2

σ (�))
3 as the set (L2(�))3

equipped with the inner product

〈ϕ,ψ〉σ :=
∫
�

ϕ(y) · σ(y)−1ψ(y) dy, ϕ,ψ ∈ (L2(�))3. (2.31)

Here, we assume that σ(y) is boundedly invertible for all y ∈ �, i.e.

max{||σ(y)||∞, ||σ−1(y)||∞} � Cσ (2.32)

for all y ∈ � and some constant Cσ . Looking from a set-theoretic point of view, the space
(L2

σ (�))
3 is identical to the classical space (L2(�))3. But the inner product in (L2

σ (�))
3 has

a different orthogonality which will be crucial for the characterization of the correct current
density. For a subset U ⊂ (L2(�))3 we define

U⊥σ := {ϕ ∈ (L2(�))3 : 〈ϕ,ψ〉σ = 0 for all ψ ∈ U}. (2.33)

We initially need to do some preparations in the spirit of potential theory, see, e.g.,
Martensen [10], p 45.

Lemma 8. Let j ∈ (C1(�))3 ∩ (C(�̄))3 be a current distribution satisfying div j = 0 in �.
Then we have

curl W j = j − grad S(ν · j) in � (2.34)

with the single-layer operator

(Sg)(x) :=
∫
∂�

�(x, y)g(y) ds(y), x ∈ �.
Proof. We introduce the vector potential

(V j)(x) =
∫
�

�(x, y) j (y) ds(y), x ∈ �.
Then, using the vector identity curl curl = −
 + grad div and 
V j = − j in � for the
volume potential (see [3], theorem 8.1) we obtain that

curl W j = curl curl V j = j + grad div V j.

With the aid of div j = 0 and the Gauss divergence theorem we transform∫
�

div x(�(x, y) j (y)) dy = −
∫
�

div y(�(x, y) j (y)) dy =
∫
∂�

�(x, y)ν(y) · j (y) ds(y)

for x in �, i.e., putting the two previous equations together we have shown (2.34). �
For the rest of this section we assume that σ and its inverse are symmetric, i.e.

σ T = σ, (σ−1)T = σ−1.

On the space

X := { j ∈ (H 1(�))3 : div j = 0}
we define the operator S∇ by

(S∇ l)(x) := ( grad S(ν · j))(x), x ∈ �,
where ν · j is defined on the boundary ∂� of �. In terms of S∇ we set

N := (I − S∇)N(W )

and are now in a position to prove the following characterization theorem.
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Theorem 9. Let j be a realistic current distribution based on a conductivity distribution σ .
Then j is orthogonal to N with respect to the orthogonality in L2

σ (�), i.e.

j ∈ N⊥σ . (2.35)

Proof. For m̃ ∈ N there is m ∈ N(W ) such that m̃ = m − grad S(ν · m). For convenience
we abbreviate mν = ν · m|∂�. Then using lemma 8, the vector identity

div (a × b) = b · curl a − a · curl b

and curlσ−1 j = curl grad ϕE = 0 we transform

〈 j, m̃〉σ = 〈 j,m − grad Smν〉σ =
∫
�

j · σ−1(m − grad Smν

)
dy =

∫
�

σ−1 j · curl Wm dy

=
∫
�

div
(
Wm × σ−1 j

)
dy =

∫
∂�

ν · (
Wm × σ−1 j

)
ds.

From this, in view of Wm = 0, the statement of the theorem follows. �

3. A Tikhonov-projection algorithm for the inverse problem

This section is devoted to the use of the Tikhonov regularization for the reconstruction of a
current distribution from its magnetic fields using the Biot–Savart operator (2.10). In particular,
we need to address the lack of uniqueness as investigated in section 2. Instead of reconstructing
the original currents, we will show that the Tikhonov regularization reconstructs a projection
of these currents onto some subspace of (L2(�))3.

The Tikhonov regularization describes a stable method for the solution of ill-posed operator
equations

Aϕ = f (3.1)

in a Hilbert space setting, i.e., the operator A is a linear and compact operator from a Hilbert
space X into a Hilbert space Y . For an introduction to the theory of ill-posed problems and
regularization methods we refer to [3, 4, 9]. Since the paper attempts to address a broader
audience we will summarize the relevant results and then describe the special problems due to
nonuniqueness of the Biot–Savart operator W .

The background for the solution of (3.1) by Tikhonov regularization is given by the
singular value decomposition and Picard’s theorem. Let (µn, ϕn, gn) be a singular system
of the operator A, i.e., (µn) is the set of non-negative square roots of the eigenvalues of the
self-adjoint operator A∗ A : X → X , where A∗ : Y → X is the adjoint of A. Please note
that the eigenvalues of a self-adjoint compact operator A∗ A �= 0 form a countable set in R

accumulating only at zero. The vectors ϕn and gn are defined as in the following theorem. For
a proof we refer to theorem 4.7 in [3].

Theorem 10 (Singular value decomposition). Let (µn) be the sequence of non-negative
singular values of the compact linear operator A �= 0, ordered such that

µ1 � µ2 � µ3 � · · · (3.2)

with repetitions according to the multiplicity of the singular value, i.e., according to the
dimension of the nullspace N(µ2

n I − A∗ A). Then there exist orthonormal vectors (ϕn) in
X and (gn) in Y such that

Aϕn = µn gn, A∗gn = µnϕn (3.3)
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for all n ∈ N. For each ϕ ∈ X we have the singular value decomposition

ϕ =
∞∑

n=1

(ϕ, ϕn)ϕn + Qϕ (3.4)

with the orthogonal projection operator Q : X → N(A) and

Aϕ =
∞∑

n=1

µn(ϕ, ϕn)gn. (3.5)

Each system (µn, ϕn, gn) of this type is called a singular system of A.

The solution of (3.1) is based on the following theorem. For a proof we refer to theorem 4.8
in [3].

Theorem 11 (Picard). Let A : X → Y be a compact linear operator with singular system
(µn, ϕn, gn). Then equation (3.1) is solvable if and only if f ∈ N(A∗)⊥ and

∞∑
n=1

1

µ2
n

|( f, gn)|2 < ∞. (3.6)

In this case a solution to (3.1) is given by

ϕ =
∞∑

n=1

1

µn
( f, gn)ϕn. (3.7)

Picard’s theorem illustrates the ill-posedness of the Biot–Savart equation W j = H . As
noted already, (µn)n∈N accumulates only at zero. Thus, the values 1/µn tend to infinity for
n → ∞, and small errors in the data are strongly enlarged.

If the operator A is not injective, the projection operator Q in the representation (3.4) is
nonzero. Arbitrary elementsψ of the nullspace N(A)may be added to the solution of equation
(3.1) without changing the right-hand side, i.e., if we are givenψ ∈ N(A) and a solution ϕ of
(3.1), then the function ϕ + ψ is a solution and a unique reconstruction of ϕ is not possible.
But we can reconstruct a special projection of the solution using Tikhonov regularization as
follows. For a proof see theorem 4.13 in [3].

Theorem 12 (Tikhonov regularization). Let A be a compact linear operator. Then for each
α > 0 the operator α I + A∗ A : X → X is bijective and has a bounded inverse. We call
ϕα := Rα f with the operator

Rα := (α I + A∗ A)−1 A∗ (3.8)

the Tikhonov solution of (3.1) with regularization parameter α in the spaces X and Y . If A is
injective and ϕ satisfies Aϕ = f , then we have

ϕα → ϕ, α → 0. (3.9)

If A is not injective, the operator Rα is an operator onto the space N(A)⊥. This is a
consequence of the property

A∗Y ⊂ N(A)⊥ (3.10)

(see Picard’s theorem) which implies that α I + A∗ A maps the space N(A)⊥ onto itself. Let ϕ
be a solution of

Aϕ = f. (3.11)
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Then according to the regularization property (3.9) of the Tikhonov regularization applied in
the subspace N(A)⊥, the function ϕα = Rα f defines an approximation for the orthogonal
projection ϕ0 := Pϕ of ϕ on N(A)⊥ and we have proven the convergence

ϕα → Pϕ, α → 0. (3.12)

In this context we also refer to Groetsch [6].
Finally, we remark that in general, according to (2.35) and section 2.4 for the reconstruction

of current densities j , the true current density depends on σ and is not an element of N(A)⊥
with A = W .

4. A numerical study using the grid model and artefact correction

For the numerical solution of the inverse problem of current reconstruction a programme
package in MATLAB has been developed. The purpose of this section is summarized in the
following points.

(1) The main routine uses a ’measured’ magnetic field H and a regularization parameter α as
input. It calculates a projection onto N(W )⊥ of the original current distribution via the
Tikhonov regularization (3.8) applied to the equation W j = H .

(2) The results give numerical evidence that the location of low-current areas (the blue spots
in the density plots of this section) can be detected from this projection of the original
density distribution. This is a nontrivial observation, since the Tikhonov regularization
only reconstructs a projection of the original function and this projection could lead to
significant changes in the location of low-current areas.

(3) For selected examples we have calculated the norm difference of the original and the
reconstructed density, but since we do not expect convergence, we restrict our attention
to qualitative demonstration of the location of low- and strong-current areas in the
reconstructions as shown in the images.

(4) We show how numerical artefacts introduced by the systematic error of the Tikhonov
regularization may be treated using some new artefact-correction algorithm. The results
give numerical evidence that this method significantly improves the reconstructions.

(5) We demonstrate the influence of different grid sizes on the ill-posedness of the
reconstruction.

Remark. In general the use of the same grid both for simulations and reconstructions for
some inverse problem is known as inverse crime (cf [3]). Working on some fixed grid, the ill-
posedness of the inverse problem is significantly reduced as compared with the full continuous
problem. We use the easier problem for fixed grids to demonstrate its severe ill-posedness
and to introduce the artefact correction. As a second step the difficulty with different grids is
treated at the end of the section.

In the following, we will present the typical results for reconstructions. The goal is to
explore the practical possibilities of reconstructions for current densities using the Tikhonov-
projection algorithm. The Biot–Savart operator is discretized by the rectangular rule on a
regular grid in the cuboid � and a regular grid on the surface of some cylinder containing
�. Thus, for the numerics the operator W is represented by some matrix W to which the
Tikhonov equation is applied.

First, we show a rough estimate for the computing times solving the linear system by
MATLAB. We used a Compaq Professional Workstation XP 1000 (1280 MB main memory)
with True64 UNIX V4.0F. For grids up to the size [9, 9, 9] ≡ 2187 points we used 2400
measurement points. Then we added more measurement points such that the number of
available data slightly exceeded the number of unknowns.
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(a) (b)

(d)(c)

Figure 1. True current distribution (a) and reconstruction with 1% data error and a regularization
parameter α = 10−2 on a [5, 5, 5]-grid ((b), same on a [7, 7, 7]-grid ((c), (d)). The blue colour
indicates areas of low currents (arising from underlying defects in the fuel-cell application), the
red and yellow areas show large current densities. (Colour key in online version only.)

Grid size Number of measurements Time for reconstruction

[5, 5, 5] 3 × 20 × 40 = 2400 25 s
[7, 7, 7] 3 × 20 × 40 = 2400 120 s (2 min)
[9, 9, 9] 3 × 20 × 40 = 2400 410 s (5 min)
[11, 11, 11] 3 × 30 × 50 = 4500 2600 s (45 min)
[13, 13, 13] 3 × 40 × 55 = 6600 —



1140 R Kress et al

(a) (b)

Figure 2 . True current distribution (a) and reconstruction with  exact data and a regularization
parameter α = 10−11 (b). (Colour key in online version only.)

(a) (b)

Figure 3. True current distribution (a) and reconstruction with data error 10−6 and a regularization
parameter α = 10−11 (b). (Colour key in online version only.)
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(a) (b) (c) (d) (e) (f)

Figure 4. True current distribution (a) and reconstruction with data error d = 10−4 (a) and
regularization parameters α = 10−11 (b), 10−8 (c), 10−7 (d), 10−6 (e), 10−5 (f ). If the
regularization parameter is chosen too small, then we obtain the typical artefacts shown in (b),
where the values of the reconstructed current density show huge variations which are produced by
the data error and the instability of the inverse problem. If the regularization parameter becomes
larger, the smoothing and regularization error takes control over the influence of the data error and
we obtain blurred images. (Colour key in online version only.)

Figure 1 demonstrates an example of a reconstruction on a [5, 5, 5]-grid (upper images)
with an error of 1% and the regularization parameter α = 10−2. The left-hand column shows
the true current densities in the x3-direction, the right-hand column the reconstructed current
densities. In the lower images we calculated on a [7, 7, 7]-grid, where the area of low-current
density is the effect of low conductivity defined by some function in R

3 independent of the
grid size and sampled at the grid points.

The relative error of the reconstruction in figure 1 is 0.1361 using the Frobenius norm

||J || :=
(∑

klm

(J 2
klmx1

+ J 2
klmx2

+ J 2
klmx3

)

)1/2

, (4.1)

i.e. approximately 13%. If we calculate the error of the x3-component only, we obtain the
even better value of 0.0635, i.e. about 6%. The relative errors of the x3-component are much
smaller than the relative errors of the x1- and x2-components. This is reasonable since we
measure the magnetic field only on the shell of the cylinder and not on the base and the top.

Next, we present a series of more complex reconstructions that demonstrate the difficulty
of reconstruction and visualization of variations of the current density in the interior of the
cuboid. First, we produced the current density illustrated by figure 2(a) on a grid with
seven discretization points in each direction. Figure 2(b) shows a reconstruction with perfect
data on the original [7, 7, 7]-grid. The measurements have been taken at 800 points on
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(a)

(b)

Figure 5. (a) A reconstruction with d = 10−4 and regularization parameter α = 10−8 on a
[7, 7, 7]-grid with central current input. We obtain strong artefacts in the upper and lower part of
the cuboid. However, the same artefacts appear when reconstructing the currents for a homogeneous
conductivity distribution (b). (Colour key in online version only.)

the cylinder surface (20 circles with 40 points each), i.e. the matrix W had the dimension
2400 × 1029 = 2469 600. We show variations of the data error d and the regularization
parameter α.
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(a) (b) (c)

Figure 6. True current distribution on a [7, 7, 7]-grid with centred current input (a) and
reconstruction with d = 10−4 and regularization parameter α = 10−8 without correction (b)
and with correction (c). (Colour key in online version only.)

(a) (b) (c)

Figure 7. True current distribution on a [7, 7, 7]-grid with centred current input (a) and
reconstruction with d = 10−4 and regularization parameter α = 10−6 without correction (b)
and with correction (c). (Colour key in online version only.)
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(a) (b)

Figure 8. Reconstruction on a [9, 9, 9]-grid with data error d = 10−2 and a regularization parameter
α = 10−2 (b) from a magnetic field produced by the current distribution on a [11, 11, 11]-grid (a).
The image demonstrates that reconstructions on a grid different from the grid used for the forward
simulation are even more ill-posed than the reconstruction on the grid used for the forward model.
(Colour key in online version only.)

Now, we successively add a larger data error to the magnetic field, keeping α as it is. Up
to an error of size d = 10−6 we obtain reasonable reconstructions showing the low-current
area, as illustrated in figure 3.

At a data error of size d = 10−4 the reconstruction breaks down and we obtain the
behaviour shown in figure 4. In figure 4(f ) with α = 10−5 the smoothing of the regularization
is sufficiently large enough to correct the errors produced by the data error. But this smoothing
degrades the reconstruction and the areas of low-current density blur as shown by the image.

4.1. Central current input

For all previous examples we used a homogeneous current input at the base of the cuboid and a
homogeneous outflow at the top. Now, we study the case where the current input is performed
at a single point in the centre of the base and the full current flows out at the centre of the top
surface of the cuboid. This will cause further difficulties, as shown by figure 5, which shows
an image analogous to figure 1. We obtain strong artefacts in the upper and lower areas of the
cuboid.
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The artefacts are caused by the regularization error and are not produced by data errors,
as proven by figure 5(b). This leads to the following artefact-correction scheme which
we demonstrate in figure 6. Figure 6(b) shows the Tikhonov scheme without correction.
Figure 6(c) demonstrates the results of the correction scheme. Even better results are obtained
for the regularization parameter α = 10−6, see figure 7.

To eliminate the artefacts we used the following artefact-correction algorithm. We could
obtain significant improvements in the reconstructions and image quality.

(1) Use the Tikhonov-projection scheme to calculate the reconstructed current density Jrek

on the grid G.
(2) For the grid G and a constant conductivity distribution calculate the corresponding current

density J0 and its magnetic field H0 using the solution of the forward problem (1.1), (1.2)
and the Biot–Savart operator W .

(3) Use the Tikhonov-projection scheme to reconstruct the density J0 from its magnetic field
H0. This yields a vector of reconstructed currents J0,rek. Since this density should coincide
with J0, all differences are identified as ‘artefacts’. Calculate

Jδ := J0 − J0,rek . (4.2)

(4) Now, we correct the original reconstructed current density using Jδ , i.e. we calculate

Jcorr := Jrek + Jδ. (4.3)

To quantify the improvement provided by the artefact correction we calculated the relative
error for the reconstructions shown in figures 6 and 7.

Relative error

Pure Tikhonov Tikhonov plus artefact correction

Figure 6 0.5856 0.1813
Figure 7 0.5387 0.0508

4.2. Reconstructions with different grid sizes

Finally, we need to study the reconstruction of a current density when the grid size is not known
or when the magnetic field is produced by some fine grid (approximating a continuous current
distribution) and reconstructions are performed on a coarse grid.

We calculated the magnetic fields for current distributions on grids of the size [11, 11, 11]
and studied the reconstructions on a coarser grid. An example is shown in figure 8. Here, we
need to point out that the wrong choice of the regularization parameter will produce useless
pictures as in figure 4 (where we obtain huge artefacts or where the image is fully blurred).
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