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SUMMARY

The reconstruction of a current distribution from measurements of the magnetic �eld is an important
problem of current research in inverse problems. Here, we study an appropriate solution to the forward
problem, i.e. the calculation of a current distribution given some resistance or conductivity distribution,
respectively, and prescribed boundary currents. We brie�y describe the well-known solution of the
continuous problem, then employ the �nite integration technique as developed by Weiland et al. since
1977 for the solution of the problem. Since this method can be physically realized it o�ers the possibility
to develop special tests in the area of inverse problems. Our main point is to provide a new and rigorous
study of convergence for the boundary value problem under consideration. In particular, we will show
how the arguments which are used in the proof of the continuous case can be carried over to study
the �nite-dimensional numerical scheme. Finally, we will describe a program package which has been
developed for the numerical implementation of the scheme using Matlab. Copyright ? 2003 John Wiley
& Sons, Ltd.

1. INTRODUCTION

The reconstruction of current distributions is a basic task for many applications from such
diverse areas as medical diagnosis to non-destructive testing and exploration, see for example
[1–9]. Electric currents arise from voltages on the basis of mostly inhomogeneous resistance
distributions or conductivity tensor, respectively, or they are produced by chemical processes
within various industrial applications. Here, we will study the solution of the direct problem,
i.e. the calculation of a current distribution j which satis�es the static Maxwell equations
given an anisotropic conductivity distribution � on some domain � and prescribed boundary
currents

� · j=g on @� (1)

We consider a current �owing through a three-dimensional domain �, especially a cuboid
with axis parallel to the co-ordinate axis. This setting is of importance for several industrial

∗ Correspondence to: R. Potthast, Institut for Numerical and Applied Mathematics, University of G�ottingen, Germany.
† E-mail: potthast@math.uni-goettingen.de
‡ http://www.scienceatlas.de/nfg

Copyright ? 2003 John Wiley & Sons, Ltd. Received 4 November 2001



740 R. POTTHAST AND L. K �UHN

applications [5]. If we know the normal components of the current on the boundary @� of the
domain � and as (in general) anisotropic conductivity distribution �, respectively, the current
is uniquely determined in the interior of the domain �. Since the results are scattered in the
literature, we will summarize the basic background and sketch the derivations in Section 2.1.
Currents, voltages and conductivities are connected by Ohm’s law.
Then we investigate the grid model due to the �nite integration technique developed by

Weiland since 1977, see References [10,11] for a survey on this approach. The grid model of
the method is chosen such that it can be realized physically by wires and resistance elements.
Thus, we can use this grid model to test the measurement devices and the algorithm for
real-data reconstructions for the inverse problem. Since for the grid model the reconstruction
algorithm for the inverse problem will turn out to be less ill-posed than the full continuous
reconstruction (see Reference [3]), this is an important intermediate step for the solution of
the inverse problem. This importance substantiates the need for some rigorous study of the
relation between the continuous and the discrete model.
We prove solvability of the grid model and convergence of the solution towards the solution

of the continuous problem. In particular, we show how the arguments of the continuous model
can be discretized and used to establish the convergence properties, an approach which we
consider as a new and original contribution to the �nite integration technique in its relation to
the well-established methods for continuous boundary value problems. Also, we present some
three-dimensional numerical examples for the calculation of the magnetic �elds.

2. CALCULATION AND PROPERTIES OF CURRENT DENSITIES
AND MAGNETIC FIELDS

The goal of this section is to collect properties of the solution of the continuous problem.
Given a conductivity distribution the currents arise as a solution to an elliptic boundary value
problem and the magnetic �elds are given by the Biot–Savart law.

2.1. Background of the direct and inverse problems

To derive the grid model and prove convergence, we will �rst review the derivation of
the continuous model from the Maxwell equations and brie�y summarize the proof of its
solvability using the Lax–Milgram Theorem.
In general, the behaviour of time-independent currents, electric and magnetic �elds is

governed by the stationary (or reduced) Maxwell equations

∇×H=j; ∇×E=0

∇ ·D=�; ∇ · B=0
(2)

They are complemented by the material equations

D=��0E; B=��0H; j=�E (3)

Here, E is the electric �eld, D the electric �ux, H the magnetic �eld, B the magnetic �ux,
j a current distribution, � the current density, � the conductivity distribution, � the electric
permittivity and � the permeability of the medium under consideration, �0 and �0 are the
well-known natural constants for the vacuum.
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CONVERGENCE OF THE FINITE INTEGRATION TECHNIQUE 741

Let � be a bounded domain in R3 with piecewise C2-boundary satisfying interior and exte-
rior cone-conditions as de�ned in Reference [12]. The magnetic �eld of a current distribution
j∈L2(�) de�ned on � is given by the Biot–Savart law

H (x)=
1
4�

∫
�

j(y)× (x − y)
|x − y|3 dy; x∈R3 (4)

With the help of the fundamental solution

�(x; y) :=
1

4�|x − y| ; x �=y∈R3 (5)

the �eld H is given by the operator

(Wj)(x) :=∇x ×
∫
�
�(x; y)j(y) dy; x∈R3 (6)

We assume that a conductivity distribution is given in � and that a current distribution j is
known on the boundary @� of �. For j|@� the condition∫

@�
�(x) · j(x) ds(x)=0 (7)

will be satis�ed, which is a consequence of ∇ · j=0 in �. Also, we assume that no free
charges are present in the system.
Please note that for a closed system of currents with j ≡ 0 in the exterior of some domain

�̃ the Biot–Savart law can be derived from the Maxwell equations (2). By an application of
the rotation ∇× to ∇×H=j using ∇ ·H=0 and ∇×∇× a=−�a+∇(∇ · a) we obtain

∇× j=∇×∇×H=−�H (8)

We solve the Poisson equation (8) by a volume potential (see Reference [13, Theorem 8.1]
for the case k=0), i.e. we have

H (x)=
∫
�̃
�(x; y)∇y × j(y) dy; x∈R3 (9)

A partial integration of (9) yields (4). For the above current distribution in the domain � the
Biot–Savart law is interpreted as the part of the magnetic �eld contributed by the currents in
� after a subtraction of the magnetic �eld which arises from the currents outside of �.

2.2. An elliptic anisotropic boundary value problem

We now transform the above equations into an elliptic boundary value problem and solve
it using the Lax–Milgram theorem. We will assume that � is simply connected, later we
will also work with the assumption of convexity. Because of ∇×E=0 there is an electric
potential ’E such that E=∇’E , i.e. for the current density j we have the equation

j=�∇’E (10)
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742 R. POTTHAST AND L. K �UHN

We use the identity ∇·∇×A=0, which is valid for an arbitrary su�ciently smooth vector�eld
A, to derive from (2) the equation

∇ · j=∇ · ∇×H=0 (11)

Now, using (10) we obtain the basic equation

∇ · �∇’E=0 in � (12)

for the electric potential ’E . We will use the weak form∫
�
∇ ·�∇’E dy=

∫
@�

 � ·�∇’E ds (13)

of this equation, which can be obtained for any function  ∈H 1(�) in the Sobolev space
H 1(�) (see Reference [12]) by integrating (12) and performing a partial integration. Here,
the function � ·�∇’E is an element of the Sobolev space H−1=2(@�), the right-hand side
of (13) is understood in the sense of the dual space scalar product between H 1=2(@�) and
H−1=2(@�) and as in Section 2.1 we assume that the boundary is piecewise of class C2 with
well-behaved edges and corners such that the Gauss integral theorem can be applied. Given
the normal component

� · j=� ·�∇’E= g̃ (14)

of j on the boundary @� of the domain � we obtain a Neumann problem with Equation (12)
in � for the electric potential ’E . We use the condition∫

�
’E dy=0 (15)

to guarantee unique solvability of this problem.

Theorem 1
We assume that the conductivity tensor � is coercive in �, i.e. there is a constant c¿0 such
that

Re a ·�a¿c|a|2; a∈R3 (16)

Then, the boundary value problem given by (12)–(15) has a unique weak solution ’E∈H 1(�)
and this solution depends continuously on the boundary values g∈H−1=2(@�).

Remark
Later we will use a diagonal tensor

�=




�1 0 0

0 �2 0

0 0 �3


 (17)

for which coercivity is satis�ed because of �k¿0 in �.
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Proof
The proof is well-known using either an equivalent minimization problem (see Reference
[14]) or the Lax–Milgram theorem. Since we will later need parts of the proof to investigate
a discrete model, we will brie�y present the main steps. First, we show the uniqueness of the
problem. Let ’ be a solution of the homogeneous problem, i.e. a solution of (12), (14) with
g̃=0. We have

0 =
∫
�
’ ∇ · �∇’ dy

=−
∫
�
∇’ ·�∇’ dy +

∫
@�

’ � ·�∇’ ds (18)

Because of the homogeneous boundary condition the second integral of (18) vanishes and we
obtain ∫

�
∇’ ·�∇’ dy=0 (19)

Since � is coercive, this yields ∇’=0 in �, i.e. ’=c with some constant c. Finally from
(15) we obtain c=0 and ’≡ 0 in the domain �. This concludes the uniqueness proof.
We now use the theorem of Lax–Milgram to derive the existence of a solution to the

boundary value problem. To this end we de�ne the sesquilinear form

S( ; ’) :=
∫
�
∇ ·�∇’ dy (20)

and the bounded linear functional

Fg :=
∫
@�

 �g ds (21)

on the space

X :=H 1(�)∩
{
v :

∫
�
v dy=0

}
(22)

From (18) for the boundary value problem (12)–(14) and (15) we obtain the representation

S( ; ’E)=Fg( );  ∈X (23)

According to the Riesz representation theorem there is a bounded linear operator A :X →X
and a function f∈X such that the above equation (23) can be written in the form

( ; A’E)H 1(�)=( ; f)H 1(�);  ∈X (24)

For the �nal step we need the coercivity of the sesquilinear form S(·; ·) in the norm of X ,
i.e. we need to show

Re S(’;’)¿c||’||2X ; ’∈X (25)
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Coercivity (25) is not directly available, but it is possible to use the Poincar	e inequalities of
Theorem 2 (below) to derive from Equations (16) and (15) the estimate

Re S(’;’)¿ c ||∇’||2L2(�)

=
c

1 + C
(||∇’||2L2(�) + C||∇’||2L2(�))

¿
c

1 + C
(||∇’||2L2(�) + ||’||2L2(�))

¿
c

1 + C
||’||H 1(�); ’∈X (26)

and thus coercivity (25). Now, the bounded invertibility of the operator A, the existence of
a solution to Equation (23) and the continuous dependence of a solution on the right-hand
side of the equation is a consequence of the theorem of Lax–Milgram, see Theorem 13.23 in
Reference [15]. This shows the existence and continuity of the weak solution.
Finally, we remark that for proving the existence of a weak solution we did not use the

condition ∫
@�

g ds=0 (27)

on the boundary values g. But to obtain a strong solution from the weak equations this
condition is needed for showing that ∇ ·�∇’=0 from equation (28).

For completeness and later use here we explicitly state the continuous version of the
Poincar	e inequality.

Theorem 2
Let � be a convex bounded domain in R3 and u∈H 1(�) with∫

�
u ds=0 (28)

Then there is a constant C such that

||u||L2(�)6C||∇u||L2(�) (29)

Proof
See Chapter VII, 6 and 8 of Courant and Hilbert [16].

3. GRID MODEL AND ITS IMPLEMENTATION

We now describe the grid model due to the �nite integration technique for the numerical
solution of the continuous problem. This model can be realized physically, thus this proceeding
opens up the opportunity to test the forward problem and inverse algorithms on real data
using a physical realization of the grid model. Alternatively, �nite element, �nite volume or
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CONVERGENCE OF THE FINITE INTEGRATION TECHNIQUE 745

integral equation methods could be used for the numerical solution of the continuous forward
problem—but these methods in general do not have a physical realization.
We will restrict our attention to the simplest possible case, i.e. we consider a rectangular

domain � given by

� =
{
y∈R3; −a1

2
¡y1¡

a1
2
;
−a2
2

¡y2¡
a2
2
;
−a3
2

¡y3¡
a3
2

}
(30)

with parameters aj¿0; j=1; : : : ; 3. We would like to remark that we were led to this simple
geometry by some industrial application [5]. We denote the di�erent parts of the surface @�
as follows:


1 :=
{
y=

(−a1
2

; y2; y3

)
∈@�

}


2 :=
{
y=

(a1
2
; y2; y3

)
∈@�

}


3 :=
{
y=

(
y1;

−a2
2

; y3

)
∈@�

}


4 :=
{
y=

(
y1;

a2
2
; y3

)
∈@�

}


5 :=
{
y=

(
y1; y2;

−a3
2

)
∈@�

}


6 :=
{
y=

(
y1; y2;

a3
2

)
∈@�

}

For the �rst four sides we use the abbreviation 
̃ :=
1 ∪ · · · ∪
4.

3.1. Equations of the grid model

We consider the cuboid de�ned in (30) with the side surfaces 
̃, the base surface 
5 and the
top surface 
6. Currents are fed in at the base surface and are taken from the top surface,
i.e. we have

�(x) · j(x)=0; x∈ 
̃ (31)

and

e3 · j(x)¿0; x∈
5 ∪
6 (32)

For the grid model we use a regular grid G with n1 points in the direction of the x1-axis, n2
points in the x2-direction and n3 points along the x3-axis. We call the knot points

pklm := (x1; k ; x2; l; x3; m) (33)

for

k=0; : : : ; n1 − 1; l=0; : : : ; n2 − 1 and m=0; : : : ; n3 − 1 (34)
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746 R. POTTHAST AND L. K �UHN

with

xs; � :=
−as

2
+

�
ns − 1as; s=1; 2; 3; �=0; : : : ; ns − 1 (35)

In the discrete model currents may �ow on the regular grid between the knot points. We
denote the current �owing from a point pklm to the following point:

p(k+1)lm; pk(l+1)m and pkl(m+1)

parallel to the x1-, x2- or x3-axis by Iklmx; Iklmy or Iklmz, respectively. The virtual or real wire
between the points is called sklmx, sklmy or sklmz. For the index of the currents which are fed
in the base surface we use the index k= − 1. Thus the currents

Ikl(−1)z=I inkl ; Ikl(n3−1)z=I outkl (36)

for k=0; : : : ; n1 − 1; l=0; : : : ; n2 − 1 are input parameters for the problem, where we have
I(n1−1)lmx=0; Ik(n2−1)my=0 (37)

for k; l; m as in (34) because of the boundary condition (31). Analogously, currents with
indices k=−1 and l=−1 are set equal to zero to model the boundary condition on the side
surfaces.

De�nition 3
The boundary currents used in (36) are called admissible, if the conservation law∑

kl

I inkl =
∑
kl

I outkl (38)

is satis�ed.

To each grid point we attach the cell Cklm de�ned by its corner points

{p(k+�1)(l+�2)(m+�3); �1; �2; �3∈{0; 1}} (39)

For the discrete model we assume that the resistance of the wire sklm� for �∈{x; y; z} is given
by a positive real number Rklm�. The voltage between the knots of the grid is denoted by
Uklm�. The current Iklm�, the resistance Rklm� and the voltage Uklm� satisfy Ohm’s law

Uklm�=Iklm� ·Rklm� (40)

(see for example Reference [17]). We have the classical conservation equation

I(k−1)lmx + Ik(l−1)my + Ikl(m−1)z=Iklmx + Iklmy + Iklmz (41)

for k; l; m sd in (34), i.e. the sum of incoming and outgoing currents is zero. The mesh
theorem states that the sum of the voltages over each closed path is zero. A complete set
of mesh equations is given by the elementary meshes of G, de�ned by adjacent points, for
example

pklm; p(k+1)lm; p(k+1)(l+1)m and pk(l+1)m (42)
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The mesh equation for this example is

Uklmx +U(k+1)lmy −Uk(l+1)mx −Uklmy=0 (43)

A complete and linearly independent set of mesh equations is given by the following set of
equations. We have

Uklmy +Uk(l+1)mz −Ukl(m+1)y −Uklmz=0 (44)

for

k=0; : : : ; n1 − 1; l=0; : : : ; n2 − 2 and m=0; : : : ; n3 − 2 (45)

Uklmx +U(k+1)lmz −Ukl(m+1)x −Uklmz=0 (46)

for

k=0; : : : ; n1 − 2; l=0; : : : ; n2 − 1 and m=0; : : : ; n3 − 2 (47)

and at the top surface the equations

Uklmx +U(k+1)lmy −Uk(l+1)mx −Uklmy=0 (48)

for k=0; : : : ; n1 − 2 and l=0; : : : ; n2 − 2 and m=n3 − 1. Thus, the full discrete grid model is
given by Equations (36), (37), (41) and (44)–(48). These are

n1n2︸︷︷︸
(36)

+ n2n3 + n1n3︸ ︷︷ ︸
(37)

+ n1n2n3︸ ︷︷ ︸
(41)

+ n1(n2 − 1)(n3 − 1)︸ ︷︷ ︸
(44)

+ (n1 − 1)n2(n3 − 1)︸ ︷︷ ︸
(46)

+ (n1 − 1)(n2 − 1)︸ ︷︷ ︸
(48)

=3n1n2n3 + 1 (49)

equations, i.e. we have 3n1n2n3 + 1 equations for the 3n1n2n3 currents Iklm�. There is one
redundant equation due to the admissibility condition for the prescribed currents. We can
drop one of the knot equations and choose the last knot equation in (37) with the indices
k=n1; l=n2; m=n3 to set up the full equation system. For admissible boundary currents this
last equation is a consequence of the other equations and the admissibility condition, which
we will use in the uniqueness proof.

3.2. The grid model and the continuous model

First we interpret the grid model as a discretized version of the continuous model. To this
end we successively derive Equations (36), (37), (41) and (44)–(48).
Equation (36) for the currents at the base and top surfaces is obtained directly as a discrete

version of the boundary conditions for incoming and outgoing currents. The same is true for
the other parts of the boundary conditions given by Equation (37).
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The knot theorem (41) is the discrete version of (11) in its integral form
∫
O

� · j ds=0 (50)

for any closed surface O⊂�.
The mesh equations (44)–(48) are the discrete version of the equation

∇×∇’=0

or its integral form
∫
L

∇’ · dl=0 (51)

for any closed path L in �, where we write ’=’E .
In our case, the grid model has a practical physical realization and is of interest in itself.

But when we use the grid model as an approximation for the continuous case we need to
investigate the convergence of the solution of the discrete model towards the solution of the
continuous model.
First, we will study an extended version of Equations (36), (37), (41) and (44)–(48), where

we add a perturbation �� numbered successively by �=0; : : : ; n1n2n3−1, to the right-hand side
of each of the equations. This will not change the non-singular matrix under consideration
and the unique solvability of the system remains valid. When we write the original system
as a linear equation for the current vector I in the form

AI=b (52)

with the matrix A and the right-hand side b consisting out of I in, I out and zeros, then the
modi�ed system has the form

AI=b+ � (53)

The vector � consists of two parts, the �rst of which de�nes a function on the boundary
of the domain and corresponds to the boundary conditions (36), (37). The second part of �
can be interpreted as a function in � and corresponds to the knot theorem (41) and mesh
Equations (44)–(48).
Given a current distribution j∈C2(�)∩C1(@�) let Jn1 ; n2 ; n3 be the vector which is obtained

as the restriction of j to the nodes of the grid G. We de�ne the standard step function jn1 ; n2 ; n3
on � by extending these values from each point pklm as constants into the adjacent cell Cklm.
For a step function jn1 ; n2 ; n3 or a vector I , respectively, we use the L2-norm

||I ||G :=
{a1a2a3
n1n2n3

∑
klm

(R1; (k−1)lmI 21; (k−1)lm

+R2; k(l−1)mI 22; k(l−1)m + R3; kl(m−1)I 23; kl(m−1))
}1=2

(54)
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CONVERGENCE OF THE FINITE INTEGRATION TECHNIQUE 749

On the boundary we use the norm

||a||@G :=

a2a3

n2n3

∑
pklm∈
1∪
2

|aklm|2 + a1a3
n1n3

∑
pklm∈
3∪
4

|aklm|2

+
a1a2
n1n2

∑
pklm∈
5∪
6

|aklm|2


1=2

(55)

For a function which is de�ned on parts of the boundary we extend the function by zero and
use (55).

3.3. The discrete vector calculus

We will now introduce the notation of discrete vector analysis on a regular grid G given
by (33) in a rectangular domain (30) and establish a discrete version of the Gauss integral
theorem which is used to prove the solvability of the grid model and the convergence of the
solution of this model towards the solution of the continuous model. A discrete di�erentiation
operator in one dimension is de�ned by

(@’)l :=
1
h
(’l − ’l−1) (56)

where h is the distance between two successive points of the regular grid. The discrete gradient
in three dimensions is de�ned analogously by

(∇’)klm :=




n1
a1
(’klm − ’(k−1)lm)

n2
a2
(’klm − ’k(l−1)m)

n3
a3
(’klm − ’kl(m−1))




(57)

for k; l; m as in (34). Here, ’ is a vector de�ned on the grid G. The discrete divergence is
de�ned for vector �elds A, which are de�ned on the grid G. We use

(∇ ·A)klm := n1
a1
(A1; klm − A1; (k−1)lm)

+
n2
a2
(A2; klm − A2; k(l−1)m) +

n3
a3
(A3; klm − A3; kl(m−1)) (58)
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for k; l; m as in (34). Now, the Gauss integral theorem obtains the special form

a1a2a3
n1n2n3

n1−1∑
k=1

n2−1∑
l=1

n3−1∑
m=1

(∇ ·A)klm = a2a3
n2n3

n2−1∑
l=1

n3−1∑
m=1

(A1; (n1−1)lm−A1;0lm)

+
a1a3
n1n3

n2−1∑
k=1

n3−1∑
m=1

(A2; k(n2−1)m−A2; k0m)

+
a1a2
n1n2

n1−1∑
k=1

n2−1∑
l=1

(A3; kl(n3−1)−A3; kl0) (59)

A proof of the discrete Gauss integral theorem is obtained by a simple reordering of the terms
in the �nite sum on the left-hand side of (59). As a discrete version of the chain rule we use
the equation

(@(’ ))l =
1
h
(’l l − ’l−1 l−1)

=’l(@ )l + (@’)l l−1

In particular, we obtain

(∇ · (’A))klm =’klm(∇ ·A)klm + (@1’)klmA(k−1)lm
+(@2’)klmAk(l−1)m + (@3’)klmAkl(m−1) (60)

We need to state a discrete version of the Poincar	e inequality Theorem 2 with the norms
used in Section 3.2.

Theorem 4
Let u be a function de�ned on the grid G with

∑
pklm

uklm=0 (61)

Then we have

||u||G6c′||∇u||G (62)

with the norms de�ned in (54) and (55) and a constant c′ not depending on the grid parameters
n1; n2 and n3.

Proof
A proof can be performed analogously to the proof of (1) in Reference [4, p. 488].
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3.4. Solvability and convergence

We are now prepared to the prove uniqueness and subsequently the convergence properties
of the scheme.

Theorem 5 (Unique solvability of the �nite system)
The system of equations de�ned by (36), (37), (40), (41) and (44)–(48) is uniquely solvable
for each admissible set (36) of incoming and outgoing currents.

Proof
We need to show that the quadratic matrix arising from the equations is non-singular. To this
end it is su�cient to show its injectivity. We will now develop a proof using a discrete form
of the uniqueness part of Theorem 1. First, we note that with the discrete vector analysis
notation we have

(∇ · I)klm=0 (63)

for k; l; m as in (34). This is just another formulation of the knot theorem (41). Because of
the mesh equations there is a potential ’ on the grid G such that

(∇’)klm=




U1; (k−1)lm

U2; k(l−1)m

U3; kl(m−1)


 (64)

We now use the discrete form of the Gauss theorem (59) applied to the vector ∇ · (’I) with
the potential ’ and the current vector I on the grid G to obtain

0 =
a1a2a3
n1n2n3

∑
klm

’klm (∇ · I)klm

=−a1a2a3
n1n2n3

∑
klm

((@1’)klmI1; (k−1)lm + (@2’)klmI2; k(l−1)m

+(@3’)klmI3; kl(m−1))

+
a2a3
n2n3

n2−1∑
l=1

n3−1∑
m=1

(’(n1−1)lmI1;(n1−1)lm−’0lmI1;0lm)

+
a1a3
n1n3

n2−1∑
k=1

n3−1∑
m=1

(’k(n2−1)mI2; k(n2−1)m−’k0mI2; k0m)

+
a1a2
n1n2

n1−1∑
k=1

n2−1∑
l=1

(’kl(n3−1)I3; kl(n3−1)−’kl0I3; kl0) (65)
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If I satis�es homogeneous boundary conditions on @�, then the last three terms of (65)
vanish. Because of

(@1’)klm=U1; (k−1)lm=R1; (k−1)lmI1; (k−1)lm (66)

and analogous equations for the second and third components we obtain

0 =
a1a2a3
n1n2n3

∑
klm

(R1; (k−1)lmI 21; (k−1)lm + R2; k(l−1)mI 22; k(l−1)m

+R3; kl(m−1)I 23; kl(m−1)) (67)

Since all resistance components are positive, we obtain I ≡ 0 on G and therefore the injectivity
and regularity of the matrix arising from Equations (36), (37), (40), (41) and (44)–(48).

Theorem 6 (Stability)
For a solution of Equation (53) we have

||I ||G6C(||I in||@G + ||I out||@G + ||�||G) (68)

with a constant C not depending on n1, n2 and n3.

Proof
Let I be a solution of (53). Then we de�ne U by (40) and the potential ’ by (66) with the
additional condition ∑

pklm

’klm=0 (69)

For the following estimates we �rst remark that because of Rklm¿	¿0 with some constant 	
we have 

∑
�

|��|2


1=2

6
1
	
||�||G (70)

Second, for points pklm in the interior of � we have (∇ · I)klm=�� for some � where to each
interior node of G there is exactly one �� as organized by system (53). On the boundary we
have equations of the form Ikl(−1)z=I inkl + �� and I(n1−1)lmx=�� for some � arising from (36)
and (37), where now to each point there is exactly one �� not used for the interior points.
We now proceed as in (65)–(67) to derive

||I ||2G =
a1a2a3
n1n2n3

∑
klm

(R(k−1)lmI 2(k−1)lm

+Rk(l−1)mI 2k(l−1)m + Rkl(m−1)I 2kl(m−1))

= − a1a2a3
n1n2n3

∑
klm

’klm (∇ · I)klm
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+
a2a3
n2n3

n2−1∑
l=1

n3−1∑
m=1

(’(n1−1)lmI1; (n1−1)lm−’0lmI1;0lm)

+
a1a3
n1n3

n1−1∑
k=1

n3−1∑
m=1

(’k(n2−1)mI2; k(n2−1)m−’k0mI2; k0m)

+
a1a2
n1n2

n1−1∑
k=1

n2−1∑
l=1

(’kl(n3−1)I3; kl(n3−1)−’kl0I3; kl0)

6 c||’||G(||�||G + ||I in||@G + ||I out||@G) (71)

with some constant c not depending on n1; n2 and n3. We use the discrete form Theorem 4
of the Poincar	e estimate to derive

||’||G6c′||I ||G (72)

with some constant c′ and �nally obtain (68) with C=cc′.

Theorem 7 (Consistency and Convergence)
Given some solution j∈C1(�)∩C( ��) of the continuous boundary value problem (12), (14)
and (15) and a grid G let Itrue be the discretized version of j and I be the solution of the
grid model with boundary values given by � · j, i.e. Itrue := j(pklm) and AI=b. Then with

h := max
{
a1
n1

;
a2
n2

;
a3
n3

}
(73)

we have

||Itrue − I ||G=O(h) (74)

for su�ciently small h. This proves (linear) convergence of the solution of the grid model to
the solution of the continuous model.

Proof
On the grid G we approximate the integrals (50) and (51) for the continuous solution j by
the rectangular rule and obtain the system of equations (53). Here, the components of � are
O(h) due to the linear convergence of the rectangular rule for di�erentiable functions. This
is the consistency of the discretization scheme and it is usually used as a key argument to
derive the convergence of the �nite integration technique. The solution I solves (53), and by
subtracting the two Equations (52) and (53) we now obtain

A(Itrue − I)=� (75)

and thus estimate (74).

3.5. Implementation and examples

For the numerical solution of the direct problem according to the grid model a program
package in MATLAB has been developed. Given a resistance function, parameters for the

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:739–757



754 R. POTTHAST AND L. K �UHN

rectangular domain under consideration and the currents at the boundary of the domain, the
currents in the domain and the magnetic �eld on some external cylinder is calculated. All
functions have been combined into a function magneticfield.

>> [Bexakt,Jexakt]=magneticfield(a, n, b, N, m, Rf)

with

input parameters:

a length of the axis of the cuboid a=[a1,a2,a3]
n number of discretization points along the three axis

n=[n1,n2,n3]
b radius and height b=[r,h] of measurement cylinder
N number of discretization points N=[nr,nz] for the

measurement cylinder
m parameter for current boundary input

1 : uniform input on base and uniform outflow on top
2 : in and outflow of current centered

Rf Name (string) of a resistance function
of the form Rf(x,y,z) (filename Rf.m)
giving the resistance in the point x,y,z as vector
[Rx,Ry,Rz].

output parameters:

Jexakt current in the cuboid, vector of size 3*n1*n2*n3
Bexakt magnetic field on the measurement cylinder

of dimension 3*nr*nz

The program solves the linear system arising from Equations (36), (37), (41) and
(44)–(48) and calculates the magnetic �eld B according to the Bio–Savart law (4) using
a simple rectangular rule. A graphical representation of the calculated current density is ob-
tained using the function

>> stromvektorplot(a, n, J)

with the

input parameters:

a length of the axis of the cuboid a=[a1,a2,a3]
n number of discretization points along the three axis

n=[n1,n2,n3].
J current in the cuboid, vector of size 3*n1*n2*n3

The �gure which is produced by stromvektorplot can be supplemented by a graph of the
magnetic �eld in vectorial form. This is done by the function

>> BFeldvektorplot(b, N, B)
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Figure 1. Grids with 5 and 8 grid points in each direction, i.e. n=[5; 5; 5] or n=[8; 8; 8], and currents
(blue arrows) for a homogeneous resistance distribution and centred input=out�ow.

where we have the

input parameters:

b radius and height b=[r,h] of measurement cylinder
N number of discretization points N=[nr,nz] for the measurement cylinder
B magnetic field on the measurement cylinder with dimension 3*nr*nz
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Figure 2. The grid with n=[5; 5; 5] and the magnetic �eld on a measurement cylinder for some
homogeneous current distribution with two di�erent views performed by rotation using MATLAB.

Examples for the output are shown in Figures 1 and 2. We show current density distributions
with 5 or 8 discretization points in each direction, respectively. The �gures can be interactively
turned using the MATLAB system and provide a visual check of the program for the direct
problem as well as a tool for checking measurements when the inverse problem is investigated
and applied to real data.

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:739–757



CONVERGENCE OF THE FINITE INTEGRATION TECHNIQUE 757

REFERENCES

1. Banks HT, Kojima F. Boundary shape identi�cation in two-dimensional electrostatic problems using SQUIDs.
Journal of Inverse Ill-Posed Problems 2000; 8(5):487–504.

2. Je�s B, Leahy R, Singh M. An evaluation of methods for neuromagnetic image reconstruction. IEEE
Transactions on Biomedical Engineering 1987; 34(9):713–723

3. Kress R, K�uhn L, Potthast R. Reconstruction of a current distribution from its magnetic �eld, Inverse Problems
2002;18:1127–1146.

4. Ok S, Ramon C, Marks RJ, Nelson AC, Meyer MG. Resolution enhancement of biomagnetic images using the
method of alternating protections. IEEE Transactions on Biomedical Engineering 1993; 40(4):323–328.

5. Potthast R, K�uhn L, Vogt A, Hauer K-H. Rekonstruktion einer Stromdichteverteilung aus den von ihr erzeugten
Magnetfeldern f�ur das Monitoring von Brennsto�zellen, Projektreport G�ottingen, 2001.

6. Ramon C, Meyer MG, Nelson AC, Spelman FA, Lamping J. Simulation studies of biomagnetic computed
tomography. IEEE Transactions on Biomedical Engineering 1993; 40(4):317–322.

7. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Physics in
Medicine & Biology 1987; 32(1):11–22.

8. Stroink G. Cardiomagnetic imaging. In Frontiers in Carciovascular Imaging. Zaret BL, Kaufman L, Berson
AS, Dunn RA (eds). Raven Press: New York, 1993.

9. Tilg B, Wach P. An iterative approach on magnetic source imaging within the human cortex—a simulation
study. International Journal of Bio-Medical Computing 1995; 40:51–57.

10. Clemens M, Weiland T. Discrete electromagnetism with the �nite integration technique. Progress in
Electromagnetics Research, PIER 2001; 32:65–87.

11. Clemens M, Thoma P, Weiland T, van Rienen U. Computational electromagnetic-�eld calculation with the
�nite-integration method. Survey of Mathematics and Industries 1999; 8:213–232.

12. Gilbarg D, Trudinger NS. Elliptic Partial Di�erential Equations of Second Order. Springer: Berlin, 1998.
13. Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theory (2nd edn). Springer-Verlag: Berlin,

1998.
14. Hanke M. Mathematische Grundlagen der Impedanztomographie. Lecture, University of Karlsruhe, 1996=97.
15. Kress R. Linear Integral Equations (2nd edn). Springer-Verlag: Berlin, 1999.
16. Courant R, Hilbert D. Methoden der Mathematischen Physik II. Springer-Verlag: Berlin, Heidelberg, New

York, 1968.
17. Gerthsen Ch, Kneser HO, Vogel H. Physik. Springer-Verlag: Berlin, Heidelberg, New York, 1974.

Copyright ? 2003 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2003; 26:739–757


