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Dynamical Inverse Scattering, Survey

1. Static scatterer and wave, i.e. one frequency time-harmonic wave

2. Multi-Frequency scattering, static scatterer

3. Dynamical wave field, i.e. time-dependent pulse

4. Moving Scatterer, i.e. constant speed, accelerating, rotating

5. Scatterer is evolving, i.e. changing its location or shape, we get repeated

measurements for various time-slices

6. Inverse Scattering Problem as part of a larger dynamic inverse problem.
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Dynamical Inverse Scattering, Selection

2. Multi-Frequency scattering, static scatterer

Orthogonality Sampling (2010)

3. Dynamical wave field, i.e. time-dependent pulse

Time-Domain Probe Method (Burkard & P. 2009)

4. Moving Scatterer, i.e. constant speed, accelerating, rotating

Doppler Effect

5. Scatterer is evolving, i.e. changing its shape, we get repeated

measurements for various time-slices Variational Methods (3dVar/4dVar)

6. Scattering as part of a larger dynamic szene, repeated measurements for

time-slices, Variational Methods (3dVar/4dVar) or Ensemble Filter
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Variational Approach

Ensemble Kalman Filters (EnKF)

Localization

Error Analysis for Ensemble Methods

EnKF Error Analysis
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Orthogonality Sampling Method

ALGORITHM (ONE-WAVE OS, MULTI-WAVE OS)

For fixed wave number κ one-wave orthogonality sampling calculates

µ(y, κ) =
∣∣∣ ∫

S
eiκϕ̂·y u∞(ϕ̂) ds(ϕ̂)

∣∣∣ (1)

on a grid G of points ỹ ∈ Rm from the knowledge of the far field pattern u∞ on

the unit sphere S.

For fixed wave number κ multi-direction orthogonality sampling calculates

µ(y, κ) =

∫
S

∣∣∣ ∫
S

eiκϕ̂·y u∞(ϕ̂, θ) ds(ϕ̂)
∣∣∣ds(θ) (2)

on a grid G of points ỹ ∈ Rm from the knowledge of the far field pattern

u∞(ϕ̂, θ) for ϕ̂, θ ∈ S.
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Multi-frequency Orthogonality Sampling

ALGORITHM (MULTI-FREQUENCY)

The multi-frequency orthogonality sampling calculates

µ(y, θ) =

∫ κ1

κ0

∣∣∣ ∫
S

eiκϕ̂·y u∞(ϕ̂, θ) ds(ϕ̂)
∣∣∣dκ (3)

on a grid G of points ỹ ∈ Rm from the knowledge of the far field pattern

u∞κ (ϕ̂) for ϕ̂ ∈ S and κ ∈ [κ0, κ1].

Here also multi-direction multi-frequency sampling is possible by adding the

indicator functions for several directions of incidence.
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One Wave, one frequency: the simplest setting

Graphics: Orthogonality sampling with κ = 1 or κ = 3 for fixed frequency, one

direction of incidence
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Multi-direction Ortho Sampling

Graphics: Orthogonality sampling, many directions of incidence, fixed

frequency
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Multi-frequency Ortho Sampling

Graphics: Orthogonality sampling, many directions of incidence, fixed

frequency
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Resolution Study: Large Scale

Graphics: Multi-frequency Orthogonality sampling with κ between 0.1 and 1,

i.e. with a frequency between λ = 6 and λ = 60, one direction of incidence
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Resolution Study: Medium Scale

Graphics: MDMF Orthogonality sampling with κ between 3 and 4, i.e. with a

frequency between λ = 1.5 and λ = 2
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Resolution Study: Medium Scale

Graphics: MDMF Orthogonality sampling with κ between 6 and 15, i.e. with a

frequency between λ = 0.4 and λ = 1
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Resolution Study: Fine Scale

Graphics: MDMF Orthogonality sampling with κ between 10 and 20, i.e. with a

frequency between λ = 0.3 and λ = 0.6
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Resolution Study: Very Fine Scale

Graphics: MDMF Orthogonality sampling with κ between 20 and 40, i.e. with a

frequency between λ = 0.15 and λ = 0.3
14/82



Orthogonality Sampling
Variational and Ensemble Methods

Dynamic Inverse Scattering
Inverse Scattering within Weather Prediction

Resolution Study: Very Fine Scale

Graphics: MDMF Orthogonality sampling with κ between 20 and 40, i.e. with a

frequency between λ = 0.15 and λ = 0.3
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Medium Reconstructions I

Graphics: Orthogonality sampling for medium reconstruction, MD, fixed

frequency κ = 9.
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Medium Reconstructions II

Graphics: Orthogonality sampling for medium reconstruction, MDMF.
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Medium Reconstructions III

Graphics: Orthogonality sampling for medium reconstruction, MDMF.
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Medium Reconstructions IV

Graphics: Orthogonality sampling for medium reconstruction, MDMF.
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Neumann BC I

Graphics: Orthogonality sampling for the Neumann BC, MF.
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Neumann BC II

Graphics: Orthogonality sampling for the Neumann BC, MDMF.
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Neumann BC II

Graphics: Orthogonality sampling for the Neumann BC, MDMF.
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Orthogonality Sampling Convergence Dirichlet Case

Theorem (Convergence or Ortho-Sampling, P 2007/08)

The orthogonality sampling algorithm with the Dirichlet boundary condition for

one-wave fixed frequency reconstructs the reduced scattered field, i.e.

us
red (x) =

∫
∂D

j0(κ|x − y|)∂u(y)

∂ν(y)
ds(y), x ∈ Rm. (4)

Convergence analysis of the method can be based on the Funk-Hecke formula.
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A dynamical system

• We have some state space X with states ϕ.

• We have some dynamics M mapping ϕ(s) into ϕ(t) for t ≥ s ∈ R:

ϕ(t) = M(s, t, ϕ(t)), t ≥ s ∈ R. (5)
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A dynamical system

M can be given by some differential equation or system of ODE:

�
ϕ (t) = F(t, ϕ(t)), t ≥ 0 (6)

with initial condition
ϕ(0) = ϕ0. (7)

We can solve these systems by standard tools as described in lectures about ODE, e.g. the Runge-Kutta Method.
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A dynamical system

Often, X is a normed space or Hilbert space, each state ϕ(t) is a function on

some domain Ω, i.e.: ϕ(t) = {ϕ(x, t) : x ∈ Ω} for t ≥ 0.

Dynamical PDE System

The dynamical system of nonlinear partial differential equations has the form

�
ϕ (x, t) = F(t, x, ϕ(x, t)), x ∈ Ω, t ≥ 0 (8)

with initial conditions (IC)

ϕ(x, t) = ϕ0(x), x ∈ Ω (9)

and boundary conditions (BC)

ϕ(x, t) = ψ(x, t), x ∈ ∂Ω, t ≥ 0. (10)
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Main Task of Data Assimilation I

• We measure data fk ∈ Y at time tk ≥ 0 in an observation space Y .

• The task of data assimilation is to employ measured data fk at time tk to

control the dynamical system ϕ(t) and provide realistic states ϕ(a)(t),

also called the analysis.

30/82



Orthogonality Sampling
Variational and Ensemble Methods

Dynamic Inverse Scattering
Inverse Scattering within Weather Prediction

Variational Approach
Ensemble Kalman Filters (EnKF)
Localization
Error Analysis for Ensemble Methods
EnKF Error Analysis

Main Tasks Data Assimilation II

• Provide an estimate for the whole state ϕ ∈ X , even if parts of it

cannot be measured.
• Calculate initial conditions for forecasts.
• Determine a coherent trajectory over time, when data assimilation is

recalculated with one coherent DA system, to study the state evolution.

This is called reanalysis.
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Treatment of the Temporal Dimension

(3dVar)

(4dVar)
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The Data Assimilation Process
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Motivation I

Let H be the observation operator mapping the state ϕ onto the measurements

f . Then we need to update or find ϕ using the equation

H(ϕ) = f ,

where H−1 is unstable or unbounded. When we have some initial guess ϕ(b),

we transform the equation into

H(ϕ− ϕ(b)) = f − Hϕ(b),

with the incremental form

ϕ = ϕ(b) + H−1(f − Hϕ(b)).
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Least Squares

In order to find out ϕ we should minimize the functional

J(ϕ) := ‖ϕ− ϕ(b)‖2
+ ‖f − Hϕ(b)‖2

.

The normal equations are obtained from first order optimality conditions

∇ϕJ = 0.

Usually, the relation between variables at different points is incorporated by

using covariances/weighted norms:

J(ϕ) := ‖ϕ− ϕ(b)‖2

B−1 + ‖f − Hϕ(b)‖2

R−1 ,

The variational update formula is now

ϕ(a) = ϕ(b) + BH∗(R + HBH∗)−1(f − Hϕ(b))
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Kalman Filter

In the Kalman filter method we calculate an analysis update by

ϕ
(a)
k = ϕ

(b)
k + B

(b)
k H∗(R + HB(b)H∗)−1(fk − Hϕ

(b)
k ) (11)

and an covariance update by

B
(a)
k = (I − KH)B

(b)
k , k = 1, 2, 3, ... (12)

with the Kalman Gain Matrix

Kk = B
(b)
k H∗(R + HB

(b)
k H∗)−1

and the weight or covariance matrix B evolves with the model dynamics M,

B
(b)
k+1 = Mk B

(a)
k M∗k , k = 1, 2, 3, ... (13)
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Kalman Filter for Large-Scale Problems?

1. In Numerical Weather Prediction (NWP) the typical problem size is

around n = 108 unknowns and could easily be larger when resolution is

increased. The number of measurements which are employed at each

time tk are around m = 107.

2. In the Kalman Filter, this would lead to matrices B of the size 108 × 108,

which has strong impact on calculation times.

3. For short range numerical weather prediction (SRNWP), we have only

around 15 minutes on a supercomputer to calculate the analysis, for

modern applications with fast update rates we need to go down to 5min.

4. One main problem of modern NWP is to find low-dimensional

approximations which can be incorporated into the algorithms!
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Use Ensembles for Approximation

• Instead of running only one version of our dynamical system, we run L

different versions of it, which we call ensembles or particles.

• This is computationally expensive for the forward problem, but we will

save on the minimization needed for calculating the analysis.

• With the ensemble we can capture the uncertainty both in the model as

well as in the analysis!
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Ensemble Kalman Filter

The main idea of the Ensemble Kalman Filter is to approximate the B matrix

in all of its steps by an ensemble in the form B = QQ∗, when

Q :=
1√

L− 1
(ϕ(1) − µ, ..., ϕ(L) − µ)

with ensemble mean µ =
∑L

j=1 ϕ
(j). This is the standard unbiased

stochastic estimator for the covariance matrix.
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We need to propagate the ensemble through time. Starting with an ensemble{
ϕ
(l)
0 , l = 1, ..., L

}
, this leads to ensemble members

ϕ
(l)
k+1 = Mkϕ

(l)
k , k = 1, 2, 3, ...

This means that we solve the equation in a low-dimensional subspace

U(L) := span{ϕ(1)
k − µk , ..., ϕ

(L)
k − µk}.
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The update formula now is

ϕ
(a)
k = ϕ

(b)
k + Qk Q∗k H∗(R + HQk Q∗k H∗)−1(fk − Hϕ

(b)
k )

The updates of the EnKF are a linear combination of the columns of Qk . We

can therefore write

ϕk − ϕ(b)
k =

L∑
l=1

γl
1√

L− 1

(
ϕ
(l)
k − ϕ

(b)
k

)
= Qkγ

with coefficient vector γ ∈ RL. The resulting the expresion to minimize is

J(γ) := ‖Qkγ‖2
B−1

k
+ ‖fk − Hϕ

(b)
k − HQkγ‖2

R−1 .
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Ensemble Kalman Filter: Summary

In the Ensemble Kalman filter method we calculate an analysis update by

ϕ
(a)
k = ϕ

(b)
k + Q

(b)
k Q

(b),∗
k H∗(R + HQ

(b)
k Q

(b),∗
k H∗)−1(fk − Hϕ

(b)
k ) (14)

and a covariance update by Q
(a)
k = Q

(b)
k S with S ∈ RL×L given by

S =

√
I − (Q

(b)
k )∗H∗k

(
R + HQ

(b)
k (Q

(b)
k )∗H∗k

)−1
Hk Q

(b)
k (15)

and the ensemble {ϕ(1), . . . , ϕ(L)} evolves with the model dynamics M by,

ϕ
(b,`)
k+1 = Mkϕ

(a,`)
k , ` = 1, ..., L, k = 1, 2, 3, ... (16)
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Least Squares Analysis Model

To understand the role of localization, we study a simplified problem which is

characteristic for our analysis step in the EnKF.

• One dimensional model without cycling

• Least square estimation to obtain the analysis (LSA) and the truth is

given by a high-order function.

• The analysis is obtained using both all available observations and only a

local set.

• Estimation performed with and without background terms.

• Observations are generated from the truth with a specified observation
error σobs.

• Analysis approximated by straight lines a + bx (an ensemble of linear

functions).
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Example 1a

Fig.1: Truth (blue line), observations (blue circles), background (green), no background LSA (red) and
background LSA (black) for σobs = 0.05 and different localization radii.
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Example 1b

Fig.2: Truth (blue line), observations (blue circles), background (green), free LSA (red) and bg LSA (black)
for σobs = 0.5 and different localization radii.
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Fig.4: Theoretical and numerical results for error as a function of ρloc , σobs = [0.0005 0.05 0.5].

• The optimal value of ρloc takes smaller values when σobs decreases.

• For large values of σobs the analysis without the background correction is

clearly worse than analysis considering the background.
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Idea of Localization I

• Carry out the ensemble analysis in subsets of the full spatial domain!

• Given a localization radius ρ > 0 the analysis at a point x this is

effectively using only observations at one point y with ‖x − y‖ ≤ ρ.
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Different Forms of Localization

• We can localize the B matrix by multiplying it element-wise with some

localization matrix C, i.e. taking the Schur product B • C.

• In this case, if the localized B-matrix does not have any particular block
structure, localization still involves all variables!

• We can localize the observations, by carrying out an analysis with a

limited set of observations located in some domain D. But then we also
need the localization of the background term, since otherwise remote

features of the background might dominate the local analysis at the

observation point.
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Example 2a: What Localization Achieves

Truth (left) and solution by EnKF with straight front ensemble without localization.

Solution by EnKF with straight front ensemble with medium (left) and strong (right) localization.
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Recall our Setup

We start with the update formula

ϕ(a) = ϕ(b) + BH′(R + HBH′)−1(f − Hϕ(b)).

In the EnKF methods the background convariance matrix is represented by

B
(ens)
k := Qk Q∗k , where the ensemble matrix Qk is defined as

Qk :=
1√

L− 1

(
ϕ
(1)
k − ϕ

(b)
k , ..., ϕ

(L)
k − ϕ

(b)
k

)
,

where ϕ(b) denotes the mean 1
L

∑L
l=1 ϕ

(l).

Thus, we solve the update in a low-dimensional subspace

U(L) := span{ϕ(1)
k − ϕ

(b)
k , ..., ϕ

(L)
k − ϕ

(b)
k }.

54/82



Orthogonality Sampling
Variational and Ensemble Methods

Dynamic Inverse Scattering
Inverse Scattering within Weather Prediction

Variational Approach
Ensemble Kalman Filters (EnKF)
Localization
Error Analysis for Ensemble Methods
EnKF Error Analysis

EnKF, Coefficients and Norms

The EnKF update formula now is

ϕ
(a)
k = ϕ

(b)
k + Qk QT

k H∗(R + HQk QT
k H∗)−1(fk − Hϕ

(b)
k )

The updates of the EnKF are a linear combination of the columns of Qk . We

can therefore write

ϕ
(a)
k − ϕ

(b)
k =

L∑
l=1

γl

(
ϕ
(l)
k − ϕ

(b)
k

)
= Qkγ

in the subspace U(L). We study the analysis error in the norm

Ek := ‖ϕ(a)
k − ϕ

(true)
k ‖H∗R−1H , (17)

where for simplicity we will assume that H is injective throughout here.
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Geometric View

ϕ(true)

x

y

ϕ(true)
ϕ(true) − ϕ̂(a)

U
(L)

ϕ̂(a) − ϕ(b)

ϕ(b)

ϕ̂(a)
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Complete Local EnKF Error Analysis

Theorem (Local EnKF Error Analysis)

The analysis error for the localized Ensemble Kalman Filter is estimated by

‖ϕ(a) − ϕ(true)‖H∗R−1H ≤ ‖Rα‖δ + E(b)
√

q2
k + (1− q2

k )cρ2 (18)

with some constant qk < 1 and E(b) = ‖ϕ(b) − ϕ(true)‖.

‖ϕ(a) − ϕ(true)‖ ≤ ‖ϕ(a) − ϕ̃(a)‖+ ‖ϕ̃(a) − ϕ(true)‖
≤ ‖Rα‖δ + Ek . (19)

Details can be found in Perianez, P. and Reich: Error Analysis and Adaptive Localization for
Ensemble Methods in Data Assimilation, Preprint.
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Dynamic Inverse Problem: Moving Scatterer

• Moving Scatterer

• Wave scattering at times tk , k = 1, 2, 3, ..., temporal scales separated!

• Measurements of the far field patterns u∞k at time tk .

• Task: Track Location of the Scatterer

• Systems M: dynamics is movement to the right with unknown

v2-component of the speed v , only known approximately!

• For numerical example: form of scatterer known, local inversion using the

point source method (P. 1996) or Kirsch-Kress method (1986)
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Original Movement
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First Guess and Reconstruction
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Reconstructed Movement
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Reconstructed Movement with random speed
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Weather is Relevant I ...

Warn and Protect

Plan Travel
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Weather is Relevant II ...

Logistics

Rivers and Environment

Air Control
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Data Survey ...

Measured variables include: temperature, moisture, cloud state and coverage, dew point,
wind speed and direction, visibility, pressure, weather state, precipitation and snow state and
dynamics, sea surface temperature (SST)

• SYNOP, Ships (ASAP)

• Radiosondes (TEMP, PILOTs),

• Buoys,

• Airplanes (AIREPS, AMDAR,
ACARS, ASDAR),

• Radar,

• Wind Profiler,

• Atmospheric Motion Vectors (AMV)

• Scatterometer,

• Radiances (IR, MW),

• GPS/GNSS, Radio Occultations,
ZTD, STD,

• Ceilometer,

• Lidar
78/82



Orthogonality Sampling
Variational and Ensemble Methods

Dynamic Inverse Scattering
Inverse Scattering within Weather Prediction

Operational Center with High Performance Computing
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Inverse Scattering as part of Numerical Weather Prediction
(NWP)
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Inverse Scattering in Numerical Weather Prediction (NWP)

Work in Progress:

• Use EnKF for assimilation of

radar data.

• Issues with localization are

important, error analysis for

multistep assimilation.

• Interaction of inversion with

system dynamics ...
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Comments/Further Questions

• Stability Anaysis (Marx/P. 2011, Moodey/P./Lawless/van Leeuwen, 2013)

many open questions on the interaction of the ill-posedness of the inverse

problem with the deterministic and stochastic properties of the evolution

of the reconstructions

• Observability is increased by using the systems dynamics, Control

Theory, generic insight and many interesting questions for a particular

application area

• Active use/Design of dynamical setup to increase reconstructability!

• Large toolbox of data assimilation methods: variational, ensemble, hybrid

... but not using core inverse scattrering methods!
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Summer School 2013 and International Symposium 2014

Summer School & Creative
Workshop ”Data Assimilation and

Inverse Problems”

Reading, UK, July 22-26, 2013

Special Issue on ”Convective Scale Data

Assimilation” Meteorologische Zeitschrift

International Symposium on Data
Assimilation 2014
LMU Munich, Germany, Feb 24-28, 2014

http://www.inverseproblems.info/reading:summer school 2013

http://www.inverseproblems.info/events:isda2014
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