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Remarks on the History of Weather Prediction |

® |n 1901 Cleveland Abbe it the founder of the United States Weather
Bureau. He suggested that the atmosphere followed the principles of
thermodynamics and hydrodynamics

® |n 1904, Vilhelm Bjerknes proposed a two-step procedure for
model-based weather forecasting. First, a analysis step of data
assimilation to generate initial conditions, then a forecasting step solving
the initial value problem.

® |n 1922, Lewis Fry Richardson carried out the first attempt to perform the
weather forecast numerically.

® |n 1950, a team of the American meteorologists Jule Charney, Philip
Thompson, Larry Gates, and Norwegian meteorologist Ragnar Fjortoft
and the applied mathematician John von Neumann, succeeded in the first
numerical weather forecast using the ENIAC digital computer.

Bjerknes
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@

e |n September 1954, Carl-Gustav Rossby’s group at the Swedish
Meteorological and Hydrological Institute produced the first
operational forecast (i.e. routine predictions for practical use)
based on the barotropic equation. Operational numerical
weather prediction in the United States began in 1955 under the
Joint Numerical Weather Prediction Unit (JNWPU), a joint
project by the U.S. Air Force, Navy, and Weather Bureau.

1962
e |n 1959, Karl-Heinz Hinkelmann produced the first reasonable

primitive equation forecast, 37 years after Richardson’s failed
attempt. Hinkelmann did so by removing high-frequency noise
from the numerical model during initialization.

e |n 1966, West Germany and the United States began producing
: operational forecasts based on primitive-equation models,
Nimbus 1: 1964 followed by the United Kingdom in 1972, and Australia in 1977.
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Skills and Scores

ECMWF FORECAST VERIFICATION 12UTC

500hPa GEOPOTENTIAL

ANOMALY CORRELATION FORECAST
N.HEM LAT 20.000 TO 90.000 LON -180.000 TO 180.000
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Forecast Day MA =12 Month Moving Average
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Organizational Structure DWD

Research and Development
e Section on Modelling

Unit Num. Modelling

Unit Data Assimilation

Unit Physics

Unit Verification

e Central Development
- Visualization DWD Business Areas

- Products e Research and Development
- Model Output Statistics

Climate and Environment
e Meteorological Observatory

. e Human Ressources
Lindenberg

e Meteorological Observatory Weather Forecast

Hohenpeissenberg

Technical Infrastructure
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Operational Center with Supercomputers
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Around 50-60 Scientists on Numerical Modelling

Research > Development > Coding > Operation > Monitoring
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National and International Network

Main Sites Reading and
DWD Offenbach/Frankfurt

and Selection of
Partner Locations

Max Planck Institute Meteorologie Hamburg, GFZ
Potsdam, Alfred Wegner Institute Bremerhafen, DLR
Oberpfaffenhofen, KIT (Karlsruhe Institute of
Technology), Universities in Bremen, Cologne, Bonn,

Gottingen, Reading, Postsdam, Munich, Berlin, ...
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acro-Physics @

e GME/ICON
Resolution 20km/13km
e COSMO-EU
Resolution 7km/6.5km
e COSMO-DE

Resolution
2.8km/2.2km
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ro-Physics
S, Planes, Satellites

Fluid Dynamics, Winds, Radiation, Heat, Rain, Clouds, Aerosols

Differential Equtions/ Primitive Equations
e Conservation of momentum

e Thermal energy equations

e Continuity equations: conservation of mass i coll

Hadley cell

Multiphysics Processes

1. Fluid flow, synoptic flow, convection,
turbulence

Hadley cell

Midlatitude cell

2. Radiation from the sun

Polar cell

3. Micro-Physics, rain formation

4. Ice growth, snow dynamics

19/55



cro-Physics
, Planes, Satellites

Outline

Dynamical Systems, Inverse Problems and Data Assimilation

Measurements: Stations, Sondes, Planes, Satellites
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Fluid Dynamics and Micro- and I\

es, Planes, Satellites @

Synop, TEMP,
Radiosondes,
Buoys,
Airplanes,
Radar, Wind
Profiler, Scat-
terometer,
Radiances,
GPS/GNSS,
Ceilometer,
Lidar
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Observation coverage 0ss
Lond ond Ship Synops
Date of Analyses: 2008112000 TIME : 23:15 — 00:00
Manned land (5%4§)Aulomali: land (99‘35) Monned ship (?E.E}
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DWD Observation Coverage ass
Buoy
Date of Analyses: 2008112000 TIME : 23:59 - 00:00
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Radio-Sondes ...

Observation coverage 0ss
Lond and Ship TEMPS
Date of Analyses: 2008112000 TIME : 23:59 - 00:00
Land Temp (ﬁ[t}) Ship Temp (5) Dropsonde(0)
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AMV Winds
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Scatterometer Winds 2 ...

DWD Observation coverage ass
Scotterometer Winds
Date of Analyses: 2009020912 TIME : 10:30 - 13:29
ASCAT (120792) QSCAT (2."825|3}
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Radiances 2 ...

DWD Observation coveroge ass
ATOVS Radiances
Date of Analyses: 2008112000 TIME :2230 - 0130
METOP (56461)

NOAA 15 (55588) NOAA 16 (55708) NOAA 18 (59555)
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Transmitfance

Two sounding
. frequencies/
. channels
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Weighting4unction
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Radar ...

RY-Komposit

11. NOV 2008 05:00 UTC

Nean: 0.266758  Min: O Mas: 12.7861
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Radiooccultations ...

Occulting GPS
Satellite
%&a Time Delay & Bend Angle
2 Provide Density vs. Altitude

Occulting LEO

Lt e IONOSPHERE Satellite
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Data Assimilation Methods
Tikhonov Regularization and 3dVar
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Basic Approach

Let H be the operator mapping the state x onto the measurements f. Then we
need to find x by solving the equation

Hx = f (1)
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Stochastic View

Filter (LETKF)

Basic Approach

Let H be the operator mapping the state x onto the measurements f. Then we
need to find x by solving the equation

Hx = f (1)

e Usually, the size of x is much larger than the size of f!
e Usually, H involves remote sensing operators!

e There is measurement error as well as numerical approximation error and
model error!

When we have some initial guess xp, we transform the equation into
H(x — x0) = f — H(x) )

and update
x=x+H (f— H(x)) (3)
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Consider an equation
Hx = f

where H™ ' is unstable or unbounded.

Hx = f
= H"Hx = H*f

= (al+ H"H)x = H*f.
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Stochastic View

Filter (LETKF)

Regularization 1

Consider an equation
Hx = f

where H™ ' is unstable or unbounded.

Hx = f
= H'Hx = H'f
= (al+ H"H)x = H*f.
Tikhonov Regularization: Replace H~' by the stable version
Ry = (al + H*H) " 'H*

with regularization parameter ov > 0.
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Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of

Jx) 1= (allxl?+ e = 1]12)
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Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of

Jx) 1= (allxl?+ e = 1]12) )

The normal equations are obtained from first order optimality conditions
dJ(x)

|
o (8)

Vi =
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Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of

Jx) = (allxl® + 11— 1) )

The normal equations are obtained from first order optimality conditions
dJ(x)

|
il (8)

Vid =
Differentiation leads to

0 = 2ax + 2H"(Hx — f)
= 0= (al+ H"H)x — H'f, (9)

which is our well-known Tikhonov equation

(ol + H*H)x = H*f.
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Covariances and Weighted Norms

Usually, the relation between variables at different points is incorporated by
using covariances / weighted norms:

J0) = (b= sllfms + 1 = 13- (10

The update formula is now

x = x+(B'+HRH)TH'R(f — H(x))
= xp+ BH"(R+ HBH") ™' (f — Hxp). (11)
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Regularization 3: Spectral Methods

A singular system of an operator W : X — Y written as

(Kns ©ns 9n) (12)

is a a set of singular values (, and a pair of orthonormal basis functions @, g,
such that
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Regularization 3: Spectral Methods

A singular system of an operator W : X — Y written as

(£ns s Gn) (12)
is a a set of singular values (, and a pair of orthonormal basis functions @, g,
such that
HSOn = MnGn

H*gn = WnPn- (13)
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Regularization 3: Spectral Methods

A singular system of an operator W : X — Y written as

(£ns s Gn) (12)
is a a set of singular values L, and a pair of orthonormal basis functions ¢, g,
such that
HSOn = MnGn
H*gn = WnPn- (13)
We have
o0
X = Z QpPp (14)
n=1
and

(o)
Hx = anangn. (15)
n=1
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Regularization 3: Spectral Methods

A singular system of an operator W : X — Y written as

(Kns ©ns 9n) (12)

is a a set of singular values L, and a pair of orthonormal basis functions ¢, g,
such that

HSOn = MnGn
H*gn = UnPn- (13)
We have .
X = Z QpPp (14)
n=1
and
o0
Hx = anangn. (15)
n=1

In the spectral basis the operator H is a multiplication operator!

42/55



Numerical Weath

Stochastic View

Filter (LETKF)
- i,

Regularization 3: Spectral Methods

In spectral terms we obtain
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alp, = ap,
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Filter (LETKF)

Regularization 3: Spectral Methods

In spectral terms we obtain

H* Hpn = pi2pn

alp, = ap,
thus
(al+ H"H)pn = (a + p5)pn, ne€N. (16)
Consider
oo
f=) Bun €. (17)
n=1

Tikhonov regularization («/ + H*H)x = H*y is equivalent to the spectral
damping scheme

= N. 18
Qp CJé—F/,Lan’ (18)
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True Inverse

1

true __ true

X, ¢ = —p,".
n

"
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Regularization 3: Spectral Methods

True Inverse

1

true __ ' ptrue

x, ¢ = —p,".
Hn

This inversion is unstable, if 1, — 0, n — oo!
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Regularization 3: Spectral Methods

True Inverse

n

1
e — _IBrt,rue. (19)
fin

This inversion is unstable, if 1, — 0, n — oo!
Tikhonov Inverse (stable if & > 0)
_ _Hn
Bn = mﬂn, neN. (20)

Tikhonov shifts the eigenvalues of H* H by «.
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Use the system dynamics!

So far we have not used the system M : xo — x(t).
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Filter (LETKF)
i, =

Use the system dynamics!

So far we have not used the system M : xo — x(t).

Consider some regular grid in time:

k
be = ;T, X = x(t) = M(t)x0, k=0,...;n.

(21)
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2 Stochastic View
Filter (LETKF)

Use the system dynamics!

So far we have not used the system M : xo — x(t).

Consider some regular grid in time:

k
t = ;T, xk 1= x(t) = M(t)x0, k=0,...,n. (21)

The 4dVar functional is given by:

n
J(x) = lx = xoll? D [l Hx — P (22)
k=1
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Kalman Filter: Deterministic and Stochastic View
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Kalman Filter Deterministic Version

Consider the case n = 2. We need to minimize

[x = xoll5-1 + [[HMox — £i[|2 + [|HMyx — 5 |?

(23)
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Kalman Filter Deterministic Version

@

Consider the case n = 2. We need to minimize

[x = xoll5-1 + [[HMox — £i[|2 + [|HMyx — 5 |?

Decompose it into
Ji(x) = llx = xoll5-1 + [[HMox — £ ?

and
J(x) = [Ix = xt |5 + |HMix — |

where B~ is chosen such that
[x = xill3= = lIx = xoll5—1 + [[HMox — £ [|* + ¢

with some constant c.

(23)
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Kalman Update Formula for the weights (with R error covariance matrix)
—1 _ —1 %k p—1 _
Byyy = B +MHR HMy, k=1,2,.. (27)
and for the mean

b _
Xk1 = Xk+BkM:H*(R+HMkBi(< )M:H*) W(fepr — HMix), k =1,2, ...
(28)
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i Filter (LETKF)

Kalman Update Formula for the weights (with R error covariance matrix)
—1 _ —1 * gk p—1 _
Byyy = B +MHR HMy, k=1,2,.. (27)
and for the mean

b _
Xep1 = X+ BeMH* (R+ HMkBIE )M:H*) W(fepr — HMix), k =1,2, ...
(28)

Theorem

For linear systems and linear observation operators 4dVar and the Kalman
Filter are equivalent.
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Conditional probability

for A, B sets in a probability space.
Conditional probability density

plely) = 202, () ey

From
p(x,y) = p(xly) - p(y) = p(y|x) - p(x)

(30)
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Regularization 4: Bayesian Methods

Conditional probability

for A, B sets in a probability space.
Conditional probability density

plely) = 202, () ey

From
p(x,y) = p(xly) - p(y) = p(y|x) - p(x)

we obtain Bayes’ formula

p(x]y):%, XEX, yeyv.

(30)

(31)
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Regularization 4: Bayesian Methods

Conditional probability

for A, B sets in a probability space.
Conditional probability density

plely) = 202, () ey

From
p(x,y) = p(xly) - p(y) = p(yIx) - p(x)
we obtain Bayes’ formula
p(xly) = p(x)p(y|x)

ply)

Here p(y) can be considered as a normalization constant!

xeX, yey.

(30)

(31)
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Regularization 4: Bayesian Methods

Bayes’ Formula

y measurement,
x unknown state of system

1

plxly) = — plx p(yx)
N—— p y) ~—~ N——
posteriorprob. “—~~ priorprob. measurementprob.

normalization
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Example of Bayes

o
o

Posterior PD!

o
=

o
)

Probability
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Regularization 4: Bayesian Methods

Gaussian case

p(x) = e '8 xeR"

with prior covariance matrix B,
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Gaussian case

1Tt
p(x) =e 28 X xeR"
with prior covariance matrix B,

p(ylx) = e—%(}’—Wx)TR71(y—WX)7 yevy

with measurement covariance matrix R,
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Regularization 4: Bayesian Methods

Gaussian case

1Tt
p(x) =e 28 X xeR"
with prior covariance matrix B,

p(ylx) = e_%(}’—Wx)TR71(y—WX), yevy

with measurement covariance matrix R,

leads to the posterior density

p(x|y) = const - e_% (xTBHx—i—(y—WX)TRﬂ(y_WX)>
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Maximum Likelyhood Estimator (ML)
ML: "Find the value x € X for which p(x|y) is maximal”

54/55



Numerical Weath

tochastic View

Filter (LETKF)

Regularization 4: Bayesian Methods

Maximum Likelyhood Estimator (ML)
ML: "Find the value x € X for which p(x|y) is maximal”

54/55



Numerical Weath

tochastic View

Filter (LETKF)

Regularization 4: Bayesian Methods

Maximum Likelyhood Estimator (ML)
ML: "Find the value x € X for which p(x|y) is maximal”
Maximizing

e_ 15 (XTB_1 x+(y—Wx)TR™(y— Wx))
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Regularization 4: Bayesian Methods

Maximum Likelyhood Estimator (ML)
ML: "Find the value x € X for which p(x|y) is maximal”

Maximizing
- 15 (XTB_1 x+(y—Wx)TR™(y— Wx))
e
is equivalent to minimizing

J(x) = x"B'x+ (y — wx) "R (y — wx)
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Regularization 4: Bayesian Methods

@

Maximum Likelyhood Estimator (ML)
ML: "Find the value x € X for which p(x|y) is maximal”

Maximizing

e_% (xTB—‘x+(y— wx)TR™ (y— Wx))
is equivalent to minimizing
J(x) = x"B'x+ (y — wx) "R (y — wx)
which for B = ol and R = [ is given by
J(x) = allx|* + [fwx — y[|*.

The minimum ist calculated by the Tikhonov operator.
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Data Assimilation Methods

Ensemble Kalman Filter
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Kalman Update Formula
B = (B) " +HARH)

with B,((b) via stochastic estimator
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Kalman Update Formula
B = (B) " +HARH)

with B,((b) via stochastic estimator
and for the mean

D = B i (R B HY) T (-

® Employ an ensemble of states to
capture the distribution of possibilities!

® Use stochastic estimators to dynamically
calculate the variances and covariances
of the distribution.

Hx)
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® Employ an ensemble of states to
capture the distribution of possibilities!

® Use stochastic estimators to dynamically

40 30 2w -0 B ']
calculate the variances and covariances
Kalman Update Formula of the distribution.
(a)y—1  _ (b)y—1 * y—1 [] = very efficient way to calculate the
(B) = ((B7) " +HRAH)

update of the weight matrix

with B,((b) via stochastic estimator
and for the mean

0 = OB (R HB HY) 7 (o H)
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® Employ an ensemble of states to
capture the distribution of possibilities!

® Use stochastic estimators to dynamically

40 30 2w -0 B ']
calculate the variances and covariances
Kalman Update Formula of the distribution.
(a)y—1  _ (b)y—1 * y—1 [] = very efficient way to calculate the
(B7)" = ((B7) " +HAH) . .
update of the weight matrix
with B,((b) via stochastic estimator L] But does calculations only in a low

dimensional subspace! Poor
approximation?!

0 = OB (R HB HY) 7 (o H)

and for the mean
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Local Ensemble Transform Kalman Filter (LETKF)
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LETKF Basic Idea

e Transform the states: work in
the ensemble space!

e Localize all calculations!

Kalman Update Formula for the
weights (with R error covariance
matrix)

B = ((BY)" +HAH)

with [, via stochastic estimator
and for the mean

D = x4 B H (R B HY) T (- ™)
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Challenges and Open Questions 1: Algorithms

1. Convergence concepts

2. Show different types of convergence for nonlinear systems

3. Stability and instability for cycled problems

4. Localization and convergence

5. Localization for practical problems: tomographic data?!

6. Ensemble generation, ensemble control, spread

7. lterative inversion methods << — > cycled dynamical reconstruction
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Challenges and Open Questions 2: Data and Inversion

1. Use emerging inversion techniques from scattering

2. Use tomographic data from GPS/GNSS

3. Fully employ Satellite data with clouds

4. Use measurement in boundary layer fully

5. Identify optimal measurement data

6. Use adaptive methods
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